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El algoritmo Metropolis-Hastings: problemas inversos,
calibración de modelos y el modelo TOMGRO

Abstract

Este trabajo investigativo aborda el estudio y análisis del algoritmo
Metropolis-Hastings (MH), un método numérico perteneciente a la familia de
algoritmos Markov Chain Monte Carlo (MCMC), ampliamente utilizado en
la inferencia bayesiana. Se exploran sus fundamentos teóricos y aplicaciones
en problemas inversos, destacando su capacidad para estimar parámetros
desconocidos y capturar incertidumbres en modelos matemáticos. Además,
se analizan las dificultades asociadas a su implementación, como la selección
de distribuciones a priori y la evaluación de la convergencia. Este enfoque
se ilustra con ejemplos prácticos que muestran la eficacia del algoritmo en
el contexto de la calibración de modelos, teniendo como principal objetivo la
calibración del modelo TOMGRO, un sistema dinámico destinado al estudio
del crecimiento y desarrollo de una planta de tomate.

The Metropolis-Hastings Algorithm: inverse problems,
model calibration, and the TOMGRO model

Abstract

This research work addresses the study and analysis of the
Metropolis-Hastings (MH) algorithm, a numerical method belonging to
the family of Markov Chain Monte Carlo (MCMC) algorithms, widely
used in Bayesian inference. Its theoretical foundations and applications in
inverse problems are explored, highlighting its ability to estimate unknown
parameters and capture uncertainties in mathematical models. Additionally,
the challenges associated with its implementation, such as the selection
of prior distributions and the evaluation of convergence, are analyzed.
This approach is illustrated with practical examples that demonstrate the
algorithm’s effectiveness in the context of model calibration, with a primary
focus on calibrating the TOMGRO model, a dynamic system designed for
studying the growth and development of a tomato plant.

Advisors: PhD Juan Galvis, PhD Rodrigo Gil Castañeda

i



Contents

List of Figures iv

List of Tables viii

Nomenclature ix

1 Introduction 1

2 Fundamental concepts 3
2.1 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Classical regularization methods . . . . . . . . . . . . . . . . . 5
2.1.1.1 Truncated singular value decomposition (TSVD) . . 5
2.1.1.2 Tikhonov regularization . . . . . . . . . . . . . . . . 9

2.2 Deterministic dynamical systems . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Ordinary differential equations . . . . . . . . . . . . . . . . . . 12

2.2.1.1 Existence and uniqueness of solutions . . . . . . . . . 14
2.2.1.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1.3 Further analysis . . . . . . . . . . . . . . . . . . . . 17
2.2.1.4 Numerical methods for ODE . . . . . . . . . . . . . 20

2.3 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Irreducible and aperiodic Markov Chains . . . . . . . . . . . . 24
2.3.2 Stationary distributions . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Reversible Markov Chains . . . . . . . . . . . . . . . . . . . . 27

3 Statistical approach to inverse problems 29

ii



3.1 Bayesian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Model with uncertain inputs . . . . . . . . . . . . . . . . . . . 32
3.1.2 Inverse problems and Bayesian inference . . . . . . . . . . . . 33
3.1.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.4.1 Modelling noise . . . . . . . . . . . . . . . . . . . . . 37
3.1.5 Prior models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.6 Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.7 Gaussian environment . . . . . . . . . . . . . . . . . . . . . . 43

4 Markov Chain Monte Carlo methods 47
4.1 Basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Two-walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Applications 65
5.1 Optimization via exploration . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Parameter Estimation for Dynamical Systems . . . . . . . . . . . . . 72
5.4 TOMGRO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3.1 With simulated data . . . . . . . . . . . . . . . . . . 89
5.4.3.2 With real data . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions and Future Work 94

Bibliography 96

Appendix A Probability 99

Appendix B Linear algebra 104

Appendix C Analysis 108

iii



List of Figures

2.1 Orthogonal projection of a vector y in the range of a matrix A represented
as Py. Figure elaborated by the author. . . . . . . . . . . . . . . . . . . 7

2.2 Differentiation of data: In the left is shown a data with differentiable
noise and in the right is illustrated a data with a non differentiable noise.
Figure elaborated by the author and inspired in [6]. . . . . . . . . . . . 10

2.3 Non uniqueness in the solution of a ordinary differential equation. Figure
elaborated by the author and inspired in [13]. . . . . . . . . . . . . . . . 14

2.4 Picard’s Theorem. Figure elaborated by the autor and inspired in [13]. . 15
2.5 Example of qualitative analysis in one dimension differential equation.

Figure from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Effect of the parameter r in the vector field associated to the differential

equation. Figure from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Bifurcation diagram of x′ = rx− x2. Figure from [14]. . . . . . . . . . . 19
2.8 Phase portrait of the predator-prey model with trayectories and the

vector field. Figure elaborated by the author used the software MATLAB
provided by [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Euler method compared with the analytical solution. Figure elaborated
by the author in Julia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Picard method compared with the analytical solution. Figure elaborated
by the author in Julia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Graph representation of a Markov chain with four states. Figure
elaborated by the autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 The transition graph of a reversible Markov chain. Figure elaborated by
the autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



3.1 Mixture of two normal distribution and its mean and its maximizer value.
Figure elaborated by the author using Julia. . . . . . . . . . . . . . . . 36

3.2 Posterior distribution of the unknown X given different values of σ with
measured value y = 2. Figure elaborated by the author. . . . . . . . . . . 43

4.1 Monte Carlo integration for the integral
∫ 1

0
1
12(x − 1

2)2dx. Figure
elaborated by the author. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Transition graph of a Markov chain with three states. Figure elaborated
by the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Contour plot of the function exp(f(x, y)). Figure elaborated by the
author using Julia (consult the repository [21]). . . . . . . . . . . . . . . 55

4.4 Point cloud plot to visualize the samples obtained from the MH
execution. Figure elaborated by the author using Julia (consult the
repository [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Random walks of the variables and theirs respectives histograms. Figure
elaborated by the author using Julia (consult the repository [21]). . . . . 56

4.6 Log-density function evaluated in the samples from the distribution
π(x, y) ∝ exp(f(x, y)). Figure elaborated by the author using Julia
(consult the repository [21]). . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Convergence plot of the sampling mean in both random variables. Figure
elaborated by the author using Julia (consult the repository [21]). . . . . 57

4.8 MHRW algorithm executed in a mixture of Gaussian with different
variances. Figure elaborated by the author using Julia (consult the
repository [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Contour plot of the distribution π. Figure elaborated by the author using
Julia (consult the repository [21]). . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Some samples from the Gibbs sampler algorithm. Figure elaborated by
the author using Julia (consult the repository [21]). . . . . . . . . . . . . 61

4.11 Difference of the log-probabilities of the samples in each algorithm.
Figure elaborated by the author using Julia (consult the repository [21]). 63

4.12 Histogram of the samples obtained in each MCMC method. Figure
elaborated by the author using Julia (consult the repository [21]). . . . . 64

5.1 Result of the Metropolis algorithm in an optimization problem. Figure
elaborated by the author using Julia (consult [21]). . . . . . . . . . . . . 67

v



5.2 Result of the Metropolis algorithm in an optimization problem mixed
with Bayesian inference. Figure elaborated by the author using Julia
(consult [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Result of the Metropolis algorithm in an optimization problem with
restricted domain. Figure elaborated by the author using Julia (consult
[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Result of the Metropolis algorithm in an optimization problem in two
dimensions. Figure elaborated by the author using Julia (consult [21]). . 69

5.5 Result of the Metropolis algorithm in a linear least squares problem.
Figure elaborated by the author using Julia (consult [21]). . . . . . . . . 71

5.6 Use of the MH algorithm in the estimation of the parameters of a model.
Diagram elaborated by the author. . . . . . . . . . . . . . . . . . . . . . 73

5.7 Point cloud plot of applying the MH algorithm in parameter estimation
of the logistic model. Figure elaborated by the author using Julia (see
[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Result of applying the MH algorithm in parameter estimation of the
logistic model. Figure elaborated by the author using Julia (see [21]). . . 76

5.9 Histograms of applying the MH algorithm in parameter estimation of the
predator-prey model. Figure elaborated by the author using Julia (see
[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 Results of applying the MH algorithm in parameter estimation of the
predator-prey model. Figure elaborated by the author using Julia (see
[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 Data of reported cases extracted from [1]. Figure elaborated by
the author using Julia (see [21]). . . . . . . . . . . . . . . . . . . . . . . . 79

5.12 Result of applying the MHRW algorithm for estimating the reproduction
rate R in the SIR model. Figure created by the author using Julia (see
[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.13 Schematic of the overall development and the actual growth of tomato
plant state variables in TOMGRO. The direction of the arrows indicates
causal effects, and the ∗ indicates an effect of one or more environmental
variables on the process rates. Figure elaborated by the author and
inspired in [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.14 Representation in compartments of the TOMGRO model with one organ
and two age classes. All parameters are represented in color red. Figure
created by the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



5.15 Plot of the solution curves of the differential equation system and the
simulated data based on these curves. Figure created by the author. . . . 86

5.16 Graphs of variables measured on tomato plants over a harvest period.
Figure prepared by the author using Julia (consult [21]). . . . . . . . . . 88

5.17 Histograms obtained by executing the MHRW algorithm in the model
calibration with simulated data. In the histograms, the black line
represents the parameter value used to construct the simulation data, the
blue line shows the conditional mean value, and the red line indicates the
maximum a posteriori value. Figure created by the author using Julia
(see [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.18 On the left, the log-density of the samples is shown, while on the right, the
plot of the successive differences of the mean of the estimated parameters
in logarithmic scale is displayed. Both graphs depend on the number of
iterations. Figure created by the author using Julia (see [21]). . . . . . . 90

5.19 This figure presents the dynamics of the point statistics for the data
obtained from the model’s state variables. The black points represent
the data, the gray line corresponds to the solution given by the initial
parameters, the red line represents the maximum a posteriori estimator,
and the blue line corresponds to the conditional mean estimator. Figure
created by the author using Julia (see [21]). . . . . . . . . . . . . . . . . 90

5.20 Histograms obtained by executing the MHRW algorithm in the model
calibration with real data. In the histograms, the black line represents
the parameter value used to construct the simulation data, the blue
line shows the conditional mean value, and the red line indicates the
maximum a posteriori value. Figure created by the author using Julia
(see [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.21 On the left, the log-density of the samples is shown, while on the right, the
plot of the successive differences of the mean of the estimated parameters
in logarithmic scale is displayed. Both graphs depend on the number of
iterations. Figure created by the author using Julia (see [21]). . . . . . . 93

5.22 This figure presents the dynamics of the point statistics for the data
obtained from the model’s state variables. The black points represent
the data, the red line represents the maximum a posteriori estimator,
and the blue line corresponds to the conditional mean estimator. Figure
created by the author using Julia (see [21]). . . . . . . . . . . . . . . . . 93

vii



List of Tables

3.1 Summary of distributions commonly used as a priori distributions. Table
elaborated by the autor and inspired in [18]. . . . . . . . . . . . . . . . . 42

4.1 Comparison of rate of convergence of the three methods of sampling.
Table elaborated by the author. . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Simulated values of NP,1, NP,2, CP,1 and CP,2 depending on time t. Table
created by the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Plant measurement data obtained from [21,23]. Table created by the
author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



Nomenclature

MH Metropolis Hastings

MCMC Markov Chain Monte Carlo

ODE Ordinary differential equation

CDF Cumulative distribution function

PDF Probability density function

CLT Central limit theorem

TOMGRO Tomato growth

ix



Chapter 1
Introduction

Inverse problems constitute a fundamental area of research in contemporary science
due to their relevance in various disciplines, including the exact and natural sciences
(consult [10]). These problems are characterized by their main objective: to
reconstruct, infer or estimate unknown information from available observations, thus
allowing a more comprehensive understanding of the phenomena studied (as can be
found in [5,10]) . Their application is almost ubiquitous, from the reconstruction
of medical images to the interpretation of geophysical signals or the modeling of
climate systems. However, its solution presents multiple challenges, including the
inherent uncertainty in the available data, the sensitivity to perturbations in the
initial conditions and the numerical stability of the methods used. Addressing
these problems requires not only a solid theoretical framework, but also robust
and versatile computational strategies (see [1,10,11]).

This research work focuses on the study of the Metropolis-Hastings (MH) algorithm,
one of the most prominent methods within the Markov Chain Monte Carlo (MCMC)
approach for sampling probability distributions. This algorithm, in particular,
has proven to be a powerful tool for addressing the challenges associated with
inverse problems. Its ability to capture uncertainty in parameter estimation makes
it an essential resource for the calibration of mathematical models, especially in
contexts where the available information is limited or in the presence of measurement
error (consult [5,10]). In this framework, the present work explores how the
Metropolis-Hastings algorithm allows improving the accuracy and reliability of the
estimates, while providing a solid theoretical framework that supports the validity
of the results obtained.

Beyond its theoretical importance, the Metropolis-Hastings algorithm finds
applications across various domains. These include classical techniques like least

1



1. Introduction

squares for data fitting and naive optimization methods for parameter estimation.
Its utility extends to parameter estimation in ordinary differential equations (ODEs),
where it enhances the precision of model calibration (see [5,6,7,10]).

An important application of this approach is in the calibration of the TOMGRO
model, a mathematical model designed to simulate tomato crop growth and
production. This model combines ordinary differential equations with observational
data to realistically represent the state of the plants and their evolution over time.
The implementation of the Metropolis-Hastings algorithm in this context not only
allows to adjust key parameters of the model, but also to validate its predictive
capacity and its usefulness as a tool for decision making in agriculture. This case
study not only illustrates the applicability of the method, but also highlights its
potential for addressing inverse problems in complex systems.

In order to provide a comprehensive framework, this paper sets as main
objectives: to review the theoretical foundations of MCMC methods, to study
the Metropolis-Hastings algorithm in depth, to analyze variants such as the
Metropolis-Hastings Random Walk and the t-walk, and to explore its applications
in the calibration of mathematical models through the estimation of scalar and
functional parameters. In addition, the fundamental concepts of dynamical systems
necessary to understand the TOMGRO model are included, thus laying the
groundwork for effective implementation and proper interpretation of the results.

The structure of the thesis is designed to guide the reader from fundamentals to
practical applications. In Chapter 2, the basic concepts necessary to understand
inverse problems, dynamical systems and Markov chains are presented. Chapter
3 introduces a statistical approach to inverse problems and describes the Bayesian
framework underlying the Metropolis-Hastings algorithm. In Chapter 4, MCMC
methods are explained and the operation of the Metropolis-Hastings algorithm is
detailed, along with some of its variants such as Gibbs sampler y the Two-walk
algorithm. Chapter 5 is devoted to practical applications, with emphasis on the
calibration of the TOMGRO model. Finally, in section 6, conclusions are presented
and possible lines of future work are discussed. Additionally, the document includes
a list of figures, tables, nomenclature and appendices that provide technical and
theoretical support for the topics discussed. The repository of this thesis is
composed of several notebooks in the Julia programming language and in the
Pluto or Jupyter environment and all the graphics created are extracted from such
notebooks (please refer to the reference [21]).

2
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Chapter 2
Fundamental concepts

In this chapter a short review of fundamental concepts related to the topic of study
is made. In particular, the definitions and results of inverse problems, deterministic
dynamical systems (ordinary differential equations) and Markov chains are reviewed.
This has the purpose of laying the theoretical foundations necessary to address the
main topic of this thesis. The material presented here is extracted from [10].

2.1 Inverse problems

Inverse problems occur when the objective is to determine the underlying causes
or parameters of a system based on observed data, essentially working backwards
from the outcomes to the model. These problems are often ill-posed, meaning that
solutions may not exist, may not be unique, or may not depend continuously on the
data. This section begins by exploring classical regularization methods, which offer
stable approximations when exact solutions are not feasible (this section is inspired
in the first chapter of [10]).

In this thesis, the following definition of inverse problems will be used.

Definition 2.1. (Inverse problem, [5,10]) A inverse problem is one where an effect
can be measured, and the goal is to determine a cause. These problems arise when
one seeks to infer quantities of interest that cannot be measured directly in physical
systems.

Now, given the definition of an inverse problem, it is important to highlight when a
problem is well-posed. According to Hadamard, a problem is considered well-posed
if, for any given data:

3



2.1. Inverse problems

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

These conditions are crucial in ensuring that the problem is both theoretically sound
and practically solvable, particularly where stability and uniqueness of the solution
are key factors. A problem that does not satisfy any of Hadamard’s conditions is
called ill-posed. The mathematical formulation of an inverse problem typically
leads to an ill-posed problem.

In a mathematical formulation, inverse problems are typically expressed as either
linear or nonlinear equation in the following form

y = F (x)

where y corresponds to the measured or observable quantities, F is the operator
that usually represents the model and x are the unknown quantities of interest,
also called parameters. According to the Hadammard’s conditions for well-posed
problems F has to be onto (existence), one-to-one (uniqueness) and F−1 must exist
and be continuous (stability).

To present the classical and statistical approaches to inverse problems, a relevant
example will be used, where the advantages and disadvantages of all the methods
addressed will be discussed. One of the objectives of applying different methods to
the same example is the ability to compare them.

Example 2.2. (Inverse linear problem) Consider the matrix A in R3×3 given by

A =


1 1 0
0 0.1 0
0 0 0.01

 .

The inverse linear problem is to find a vector x ∈ R3 such that

y = Ax (2.1)

where y ∈ R3 is given by y =


y1

y2

y3

. It is not difficult to see that for any matrix

A:

4



2.1.1. Classical regularization methods

1. the solution exists if and only if y belongs to the range of the matrix A, and

2. the solution is unique if and only if the kernel of matrix A only has the null
vector as element.

The previous conditions must be satisfied in order to ensure the problem has a unique
solution. The requirements over the kernel and range of the matrix does not assure
a useful solution. From the practical point of view the vector y typically represents
the data which is contaminated by errors, then the equation (2.1) is approximated
by Ax ≈ y and, although the inverse of the matriz A exists, small errors in y may
cause errors of arbitrary size in x, in the solution to the inverse problems.

The exact inverse matrix of A is

A−1 =


1 1 0
0 10 0
0 0 100

 .

Then,

x = A−1y =


1 1 0
0 10 0
0 0 100



y1

y2

y3

 =


y1

10y2

100y3

 ,

this indicates that, if y3 is contaminated by an additive error then x3 will be
perturbed by an error 100 times larger than the error of y3. □

2.1.1 Classical regularization methods

The basic idea behind regularization methods is that, instead of attempting to solve
equation (2.1) exactly, the goal is to find a nearby problem that is uniquely solvable.
This approach ensures robustness, meaning that is expected that small errors in the
data do not excessively corrupt the approximate solution.

2.1.1.1 Truncated singular value decomposition (TSVD)

Let A ∈ Rm×n, A ̸= 0 be a real matrix defining a linear mapping Rn → Rm and
consider the matrix equation Ax = y. The starting point in this part is the following
proposition.
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2.1.1.1. Truncated singular value decomposition (TSVD)

Proposition 2.3. Let A be as above, and let A⊤ be the transpose matrix of A.
Then

1. The spaces Rn and Rm, allow orthogonal decompositions:

Rn = ker(A) ⊕ ker(A)⊥ = ker(A) ⊕ Ran(A⊤),

Rm = Ran(A) ⊕ Ran(A)⊥ = Ran(A) ⊕ ker(A⊤).

2. There exist orthonormal sets of vectors (vk) ∈ Rn, (uk) ∈ Rm, and a finite
sequence (σk) of positive numbers, σk > 0, such that

Ran(A) = span{uk | k ∈ {1, . . . , p}},

ker(A)⊥ = span{vk | k ∈ {1, . . . , p}},

and the operator A can be represented as

Ax =
p∑

k=1
σk⟨x, vk⟩uk,

where p is the range of the matrix A. The system (vk, uk, σk) is called the
singular system of the matrix A and ⟨·, ·⟩ is the inner product in R·.

3. The equation Ax = y has a solution if and only if

y =
p∑

k=1
⟨y, uk⟩uk.

In this case, a solution is of the form

x = x0 +
p∑

k=1

1
σk

⟨y, uk⟩vk,

where x0 ∈ ker(A) can be chosen arbitrarily.

The previous result leads to the singular value decomposition of the matrix A,
that is,

A = UΣV ⊤

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrix, that is, U⊤ = U−1, V ⊤ =
V −1 and Σ ∈ Rm×n is a diagonal matrix with diagonal elements

σ1 ≥ σ2 ≥ . . . ≥ σp > . . . ≥ σmin{m,n} ≥ 0.

6



2.1.1.1. Truncated singular value decomposition (TSVD)

The representation of the operator A as UΣV ⊤ allows to remove one of the possible
problems in the inverse problem Ax = y, that is y ̸∈ Ran(A). Consider P as the
orthogonal projection in the range of A defined as

P : Rm → Ran(A) ⊆ Rm : y 7→
p∑

k=1
⟨y, uk⟩uk.

It follows that for any x ∈ Rn,

∥Ax− y∥2 = ∥Ax− Py∥2 + ∥(1 − P )y∥2 ≥ ∥(1 − P )y∥2

due to the orthogonality of Ax − Py and (1 − P )y as is shown in Figure 2.1.
The previous inequality means that if y has a nonzero component in the subspace
orthogonal to the range of A then the equation Ax = y cannot be satisfied exactly.
Therefore, the best adjustment to overcome the nonsolvability is to solve the
projected equation

Ax = PAx = Py.

Figure 2.1: Orthogonal projection of a vector y in the range of a matrix A
represented as Py. Figure elaborated by the author.

Let Pr denote the truncated orthogonal projection defined as

Pr : Rm → Ran(A) ⊆ Rm : y 7→
r∑

k=1
⟨y, uk⟩uk,

where 1 ≤ r ≤ p. Thus, instead of the equation Ax = Py it is considered the
truncated projected equation

Ax = Pry.

This equation is solvable and the solution lives in the subspace generated by the
first r columns of the matrix U and is given as

xr = x0 +
r∑

k=1

1
σk

⟨y, uk⟩uk

7



2.1.1.1. Truncated singular value decomposition (TSVD)

where x0 ∈ ker(A) is chosen arbitrarily, for convenience x0 = 0 (this could be
justified chosen the solution xk that minimizes the norm).

These considerations lead to the following proposition:

Proposition 2.4. ([10]) The problem Ax = Pry mentioned above has unique
solution xk, called the truncated SVD solution, which is

xr =
r∑

k=1

1
σk

⟨y, uk⟩uk.

When r = p, the propositions establishes that

xp = A+y,

where the matrix A+ represents the pseudoinverse or Moore-Penrose inverse of A,
and it is defined as A+ = V Σ+U⊤ where

Σ+ =



1/σ1 0 . . . 0
0 1/σ2 . . . 0

. . .
... 1/σp

...
. . .

0 . . . 0


∈ Rm×n.

There is a natural question that arises in this regularization: How to choose the
truncation index r? There exists a cualitative rule that is often referred to as
discrepancy principle or Morozov’s principle (see [5,10]). Assume that the data
vector y is a noisy approximation of a noiseless vector y0. While y0 is unknown, it can
be possible to have an estimation of the noise level, i.e., ∥y− y0∥ ≈ ϵ for som ϵ > 0.
This discrepancy principle states that we cannot expect the approximate solution to
yield the smaller residual error than the measurement error, since otherwise the
solution would be adjusted to the noise. This principle leads to the following
selection criterion for r: choose r, 1 ≤ r ≤ p, as the largest index that satisfies
∥y − Axk∥ = ∥y − Pky∥ ≤ ϵ.

Example 2.5. In the Example 2.2, it can be shown that
• for r = 1, x⊤

1 = (y1 0 0),

• for r = 2, x⊤
2 = (y1 10y2 0), and,

• for r = 3, x⊤
3 = (y1 10y2 100y3).

8



2.1.1.2. Tikhonov regularization

2.1.1.2 Tikhonov regularization

The previous regularization shows that problems occur when singular values of
the operator are near to zero, causing the norm of the approximate solution xk

increases in norm when r becomes larger. The idea of this regularization is to control
simultaneously the norm of the residual Ax − y and the norm of the approximate
solution x. Let δ be a given positive number. The Tikhonov regularized solution
xδ ∈ Rn is the minimizer of the functional

Fδ(x) = ∥Ax− y∥2 + δ∥x∥2,

provided that a minimizer exists. The parameter δ is called the regularization
parameter.

It is easy to prove see that the functional can be written as

Fδ(x) =
∥∥∥∥∥∥
 A√

δI

−

 y

0

∥∥∥∥∥∥
2

,

therefore, the problem becomes a problem of least squares, and, the minimizer to
this kind of problems is given by∗

xδ = (A⊤A+ δI)−1A⊤y,

or in terms of the singular value decomposition of A,

xδ =
p∑

k=1

σk

σ2
k + δ

⟨y, uk⟩vk.

Assume an estimate ϵ > 0 of the norm of the error in the data vector. Consider
the function f : [0,∞) → [0,∞) such that f(δ) = ∥Axδ − y∥ representing the
discrepancy asociated with the parameter δ. The Morozov’s principle states that
the regularization parameter δ should be chosen from the condition f(δ) ≤ ϵ if is
possible, that is, the regularization solution should no try to satisfy the data more
accurately than up the noise level.

Observe in the previous proposition, if δ = 0 the solution given by the pseudo inverse
A+ is recover. This highlights how this regularization addresses the issue of singular
values close to zero, providing stability to the solution and mitigating the effects of
ill-conditioning in the matrix A.

∗See section 5.2.
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2.1.1.2. Tikhonov regularization

Example 2.6. Differentiation of data as an inverse problem. (Example from
[6]) One of the simplest ill-posed problems is numerical differentiation of noisy
functions, a task that is faced in many applications. Assume that it is needed to
compute the derivative of a function which includes additive noise, instead of the
exact function f , it is only known a function fα with

fα(x) = f(x) +
√

2α sin(2πkx)

for some k ∈ N, α > 0, where
√

2α sin(2πkx) represents the additive noise. Note
that the distance in L2([0, 1]) is

∥fα − f∥L2([0,1]) =
(∫ 1

0
|fα(x) − f(x)|2dx

)1/2
=
(∫ 1

0
|
√

2α sin(2πkx)|2dx
)1/2

= α.

On the other hand,

dfα

dx
(x) = df

dx
(x) + 2πk

√
2 αcos(2πkx),

and the L2([0, 1]) distance of the derivates is∥∥∥∥∥dfα

dx
− df

dx

∥∥∥∥∥
L2([0,1])

=
(∫ 1

0
|2πk

√
2 αcos(2πkx)|2dx

)1/2
= 2πkα.

Figure 2.2: Differentiation of data: In the left is shown a data with differentiable
noise and in the right is illustrated a data with a non differentiable noise. Figure

elaborated by the author and inspired in [6].

Although α could be small or near of zero, the term 2πkα can be large since it
depends on the value of k ∈ N, that means, despite of the proximity of the functions
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2.2. Deterministic dynamical systems

fα and f , the derivatives dfα

dx
and df

dx
can be far away in the norm L2([0, 1]). This

demonstrates that differentiation of data is a ill-posed problem because there is no
continuity with respect to data of the problem.

In order to solve this inverse problem, one possible option is to replace the direct
differentiation fα(x+h)−fα(x)

h
to a problem derived from Tikhonov regularization:

Find the function fλ that is the minimizer of the functional
∥fλ − fα∥2

L2([0,1]) + λ∥dfλ

dx
∥2

L2([0,1])

With this regularization is controlled the norm of the derivative and the proximity to
the data fα. The implications of differential treatment of the optimization problem
can be found in [6].

2.2 Deterministic dynamical systems

Deterministic dynamical systems provide a powerful framework for modeling and
understanding the evolution of processes governed by explicit and predictable
rules. Foundational in disciplines such as physics, biology, and engineering, these
systems describe how a system’s state evolves over time, entirely determined by
its current state and governing equations. From differential equations to iterative
maps, the study of these systems reveals insights into stability, behavior, and their
wide-ranging applications in science and technology. This section is extracted from
the first and second chapters of [14].

In this context, inverse problems emerge as a compelling challenge, focusing on
uncovering the hidden rules or parameters that drive a system based on observed
data. Unlike forward problems, which predict future states from known dynamics,
inverse problems reconstruct the systems governing equations from limited or
noisy measurements. These problems are critical in real-world scenarios, where
direct observation is often impractical, requiring advanced mathematical techniques
to overcome their inherent ill-posedness. Together, the study of deterministic
dynamical systems and inverse problems forms a bridge between theoretical
modeling and practical understanding, highlighting the intricate dance between
predictability and discovery (see the second chapter of [10]).

11



2.2.1. Ordinary differential equations

This section explores deterministic dynamical systems through the following key
topics: important theorems about the existence and uniqueness of solutions, an
introduction to the phase plane as a tool for analyzing one or two dimensional
systems, the study of bifurcations to understand qualitative changes in system
behavior, and an overview of numerical methods for solving dynamical systems
when analytical solutions are unattainable (a more comprenhensive treatment of
these topics can be found in [13,14]).

Definition 2.7. (Dynamical system) A dynamical system is a tuple (T,M,ψ),
where:

• T is the time set, usually taken as R or Z, representing continuous or discrete
time.

• M is the state space, which is a set of all possible states that the system can
occupy.

• ψ : T ×M → M is the evolution map, which describes how the system evolves
over time. For each t ∈ T and m ∈ M , ψ(t,m) gives the state of the system
at time t, starting from the initial state m.

2.2.1 Ordinary differential equations

Ordinary differential equations (ODEs) are a pillar in the study of deterministic
dynamical systems, providing a mathematical framework for describing the
continuous evolution of a system over time. An ODE is an equation involving a
function and its derivatives, where the independent variable is typically time. These
equations model a vast array of phenomena in science and engineering, from the
motion of celestial bodies and the dynamics of chemical reactions to population
growth and fluid flow. For a more extensive discussion of this topic, see [13] and
[14].

Let Ω be an open set contained in R × Rn. A point of R × Rn will be denoted
by (t, x), t ∈ R and x = (x1, x2, . . . , xn) in Rn. Let f : Ω → Rn be a continuous
function and let I be a non degenerated interval, i.e., a conected subset of R not
reduced to a single point.

12



2.2.1. Ordinary differential equations

Definition 2.8. (Solution to an ODE, [13]) A differentiable function ϕ : I → Rn

is called a solution of the equation
dx

dt
= f(t, x)

in the interval I if:

• {(t, ϕ(t))|t ∈ I} is contained in Ω, and,

• dϕ
dt

(t) = f(t, ϕ(t)) for all t ∈ I. If t is an extreme of the interval, then a lateral
derivate is replaced in the previous equation.

This work mainly uses the type of equations defined below.

Definition 2.9. ([13]) A equation dx
dt

= f(t, x) is called a ordinary differential
equation of first order and can be abbreviated as x′ = f(t, x).

As stated above, an ordinary differential equation can be seen as a dynamical system
considering the time set as the interval I, the state spaces as Rn, and finally ψ = f

as the evolution map.

Example 2.10. The exponential growth model is a fundamental concept in
ordinary differential equations, often used to describe the unrestricted growth of
populations, capital investments, or other quantities over time. This model is
governed by the differential equation:

dx

dt
= rx,

where x(t) represents the quantity of interest at time t, and r > 0 is the growth
rate. The solution to this equation, given an initial value x(0) = x0, is:

x(t) = x0e
rt.

The exponential growth model assumes constant proportional growth, implying
that the rate of change of x(t) is directly proportional to its current value. While
idealized and simple, this model serves as the basis for more complex systems and
has widespread applications in biology, economics, and physics, among other fields.

Example 2.11. (Example from [13]) Let Ω = R2 and f(t, x) = 3x2/3. For all c ∈ R
a function ϕc : R → R defined as

ϕc(t) =

(t− c)3, t ≥ c,

0, t ≤ c,
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2.2.1.1. Existence and uniqueness of solutions

is a solution of the differential equation x′ = 3x2/3 over R satisfying both conditions
in order to be a solution. This example illustrates the fact that a ordinary differential
equation can have an infinity of solutions. □

Figure 2.3: Non uniqueness in the solution of a ordinary differential equation.
Figure elaborated by the author and inspired in [13].

The next part of this chapter focuses on reviewing what are the sufficient conditions
to prove the existence and uniqueness of a solution of a first order ordinary
differential equation.

2.2.1.1 Existence and uniqueness of solutions

The proof of existence and uniqueness of a solution of ordinary differential equation
is based on the following theorem.

Theorem 2.12. (Banach fixed-point theorem, [10,13]) Let (X, d) be a non
empty complete metric space with a contraction mapping T : X → X. Then T

admits a unique fixed point x∗ in X, that is, T (x∗) = x∗. Furthermore, x∗ is an
attractor of T , that is, starting with an arbitrary point x0 ∈ X and defining the
sequence xn+1 = T (xn) for n ∈ N, then limn→∞ xn = x∗.

The proof of the previous theorem can be found in the appendixes. The following
theorem and demostration is based in [13].

Theorem 2.13. Picard’s Theorem. Let f(t, x) be a continuous function and
Lipschitz with respect to the second variable x over Ω = Ia × Bb where Ia = {t :
|t − t0| ≤ a} and Bb = {x : ∥x − x0∥ ≤ b}. Suppose |f | ≤ M in Ω, then, there
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2.2.1.1. Existence and uniqueness of solutions

exists an unique solution of the Cauchy problem x′ = f(t, x), x(t0) = x0 in Iα where
α = min{a, b/M}.

Figure 2.4: Picard’s Theorem. Figure elaborated by the autor and inspired in [13].

Proof. (Proof taken from [13]) Let X = C(Ia, Bb) be the metric space of continuous
function ϕ : Ia → Bb with the metric

d(ϕ1, ϕ2) = sup
t∈Ia

|ϕ1(t) − ϕ2(t)|.

For ϕ ∈ X, let F (ϕ) : Ia → R defined by

F (ϕ)(t) = x0 +
∫ t

t0
f(s, ϕ(s))ds, t ∈ Ia.

The correspondence ϕ → F (ϕ) define a function F with the next properties

1. F (X) ⊆ X,

2. F n = F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸
n times

is a contraction for n large enough.

Indeed, for all t ∈ Ia,

|F (ϕ)(t) − x0| =
∣∣∣∣∫ t

t0
f(s, ϕ(s))ds

∣∣∣∣ ≤ Mα ≤ b.

This proves (1). With respect to (2), for all ϕ1, ϕ2 ∈ X and for all n ≥ 0,

|F n(ϕ1)(t) − F n(ϕ2)(t)| ≤ Kn|t− t0|n

n! d(ϕ1, ϕ2), t ∈ Iα,
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where K is the Lipschitz constant of f . For n = 0, since F 0 = IX is the identity over
X then the property is obvious. Suppose that the property is valid to k. Therefore,

|F k+1(ϕ1)(t) − F k+1(ϕ2)(t)| = |F (F k(ϕ1))(t) − F (F k(ϕ2))(t)|

≤
∣∣∣∣∫ t

t0
|f(s, F k(ϕ1)(s)) − f(s, F k(ϕ2)(s))|ds

∣∣∣∣
≤
∣∣∣∣∫ t

t0
K|F k(ϕ1)(s) − F k(ϕ2)(s)|

∣∣∣∣
≤ K

∣∣∣∣∣
∫ t

t0

Kk|s− t0|k

k! d(ϕ1, ϕ2)
∣∣∣∣∣

= Kk+1|t− t0|k+1

(k + 1)! d(ϕ1, ϕ2).

Thus, d(F n(ϕ1), F n(ϕ2)) ≤ Knαn

n! d(ϕ1, ϕ2) and for n large enough Knαn

n! < 1 since
Knαn

n! goes to 0 when n tends to infinity. By the Banach fixed-point theorem this
application F admits one and only one ϕ ∈ X such that F (ϕ) = ϕ. By the
Fundamental Theorem of Calculus this fixed point belongs to C1(Ia, Bb), which
concludes the proof of the theorem. □

2.2.1.2 Systems

Let Ω be a subset of R×Rd1·d1·...·dm . Consider fi : Ω → Rdi , i = 1, . . . ,m continuous
functions and a family {ϕ1, . . . , ϕm} where each ϕi : I → Rdi , i = 1, . . . ,m is a
differentiable function over the interval I ⊆ R.

Definition 2.14. It is said that ϕ(t) = (ϕ1(t), . . . , ϕm(t)) is a solution of the system
of ordinary differential equation

dx1
dt

= f1(t, x1, . . . , xm),
dx2
dt

= f2(t, x1, . . . , xm),
...

dxm

dt
= fm(t, x1, . . . , xm),

in the interval I if:

• for all t ∈ I, (t, ϕ(t)) belongs to Ω, and,

• for all i = 1, 2, . . . ,m,
dϕi

dt
= f2(t, ϕ1(t), . . . , ϕm(t)),
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2.2.1.3. Further analysis

for all t ∈ I.

Example 2.15. The Lotka–Volterra equations, also known as the predator–prey
model, describe the dynamics of two interacting species, one as a predator and the
other as prey. This first-order nonlinear system of differential equations is given by

dx

dt
= αx− βxy,

dy

dt
= −γy + δxy,

where
• x(t) represents the prey population at time t,

• y(t) represents the predator population at time t,

• α > 0 is the natural growth rate of the prey in the absence of predators,

• β > 0 is the predation rate coefficient,

• γ > 0 is the natural death rate of the predator in the absence of prey,

• δ > 0 is the growth rate of predators per prey consumed.

2.2.1.3 Further analysis

The study of dynamical systems provides a systematic approach to understanding
the evolution of systems over time through mathematical modeling. Key concepts
such as fixed points, phase planes, and bifurcations play a central role in this
qualitative analysis. Fixed points, or equilibrium points, represent states where
the system remains unchanged over time, offering insights into the system’s
stability. The phase plane provides a geometric representation of the trajectories
of two-dimensional systems, enabling visualization of behaviors such as oscillations,
convergence, or divergence. Bifurcations, on the other hand, describe qualitative
changes in the system’s dynamics as parameters are varied, illustrating phenomena
such as the transition from stability to chaos (consult [14]).

So far, a purely quantitative treatment of ordinary differential equations has been
carried out, but here is an example that illustrates a basic technique in the qualitative
analysis of dynamical systems: interpreting a differential equation as a vector field.
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Example 2.16. (Example from [14]) Consider the ODE x′ = x2 −1. If x′ is plotted
against x, the resulting graph is shown in the figure 2.5.

Figure 2.5: Example of qualitative analysis in one dimension differential equation.
Figure from [14].

Note that a solution of the ODE is the function ϕ(t) = 1 for all t ∈ R; this happens
since the function f(t, x) = x2 − 1 is equal to zero when x = 1 for all t. The points
x∗ such that f(t, x∗) = 0 for all t are called equilibrium points or fixed points.

If f(x) > 0 over a set I ⊆ R then the resulting solution of the ODE will increase
over I, in the same way, if f(x) < 0 then the solution has to be decreasing. In the
figure 2.5 these characteristics are represented by arrows pointing to the right if f
is positive and to the left if f is negative.

It can be observed that for the point x = −1, the vector field points towards it in the
surrounding region, indicating that small perturbations around x = −1 will evolve
and eventually converge at this point; this type of equilibrium is called a stable
equilibrium. On the other hand, for the point x = 1, the vector field moves away
from it, indicating an unstable equilibrium. □

Example 2.17. (Example from [14]) Consider the logistic equation x′ = rx − x2

where r is a unknown parameter of the differential equation. The following figure
illustrates the effect of r in the vector field of the equation.

Figure 2.6: Effect of the parameter r in the vector field associated to the
differential equation. Figure from [14].
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2.2.1.3. Further analysis

The fixed points of this equation are {0, r}; this implies a fixed point may change
its stability as the parameter is varied. Note that x∗ = 0 is an equilibrium point
independently the value of r. Nonetheless, for r < 0, x∗ = r is an unstable fixed
point. As r increases, the unstable fixed point approaches to the origin, and joins
with it when r = 0. Finally, when r > 0, the origin has become unstable and x∗ = r

is now stable.

The following figure shows the bifurcation diagram for this equation: the parameter
r is regarded as the independent variable, and the fixed points x∗ = 0 and x∗ = r

are shown as dependent variables.

Figure 2.7: Bifurcation diagram of x′ = rx− x2. Figure from [14].

Note that the two fixed points change its stability when r = 0.

Example 2.18. Continuing with example about predator-prey model, it is easy to
see that the points {(0, 0),

(
α
β
, γ

δ

)
} are the only equilibrium points. The first fixed

point effectively represents the extinction of both species. If both populations are at
0, then they will continue to be so indefinitely. The second fixed point represents a
fixed point at which both populations sustain their current, non-zero numbers, and,
in the simplified model, do so indefinitely. The following figure shows the phase
portrait for the system of differential equations of the predator-prey model when
all parameters are taken equal to 1. A phase portrait is a graphical representation
showing how the solutions of a dynamical system evolve in phase space. The axes
correspond to the system variables and the trajectories show how these variables
change with time. It helps to identify qualitative behaviors such as equilibrium
points, limit cycles and stability.
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2.2.1.4. Numerical methods for ODE

Figure 2.8: Phase portrait of the predator-prey model with trayectories and the
vector field. Figure elaborated by the author used the software MATLAB provided

by [22].

2.2.1.4 Numerical methods for ODE

In this section, numerical methods for solving ordinary differential equations (ODEs)
are explored. The focus is on two methods: the Euler method and the Picard
method. These methods are widely used to approximate the solutions to ODEs
when analytical solutions are difficult or impossible to obtain. This section is based
on [11,14].

Euler Method

The Euler method is one of the simplest and most commonly used numerical methods
for solving first-order ODEs. Given an ODE of the form

y′(t) = f(t, y(t)),

with an initial condition y(t0) = y0, the Euler method approximates the solution at
discrete time steps using the approximation of first order of the function f .

Definition 2.19. (Euler Method, [11]) The Euler method for solving the ODE is
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2.2.1.4. Numerical methods for ODE

given by the recurrence relation:

yn+1 = yn + h · f(tn, yn),

where:

• yn is the approximation of the solution at time tn,

• h is the step size,

• f(tn, yn) is the value of the derivative of y at tn.

The method uses the current value yn to compute the next value yn+1. It is
straightforward to implement, but it is conditionally stable, meaning that it can
become unstable if the step size h is too large.

Picard Method

The Picard method is an iterative approach for solving initial value problems of the
form:

y′(t) = f(t, y(t)), y(t0) = y0.

It is based on the idea of approximating the solution by iterating on the integral
form of the ODE, such as the proof of Picard’s Theorem.

Definition 2.20. (Picard’s iteration., [11]) The Picard method generates a
sequence of functions yn(t) that converge to the solution of the ODE. The method
is defined by the following recurrence relation:

yn+1(t) = y0 +
∫ t

t0
f(s, yn(s)) ds,

where y0 is the initial condition and yn(t) is the approximation of the solution at
the n-th iteration. The Picard iteration is repeated until the difference between
successive approximations becomes small. It is important to remark that the
iterations of the Picard’s method corresponds to polinomials approximating the
real solution, then, the approximation is local.

Example 2.21. In order to illustrate both numerical methods, consider the initial
value problem:

dy

dt
(t) = −ty(t), y(−

√
2) = e−1.

The analytic solution to this problem is y(t) = e− 1
2 t2 . In the following two figures

are shown the results of apply the methods in the solution of this Cauchy problem.
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2.3. Markov chains

Figure 2.9: Euler method compared with the analytical solution. Figure
elaborated by the author in Julia.

Figure 2.10: Picard method compared with the analytical solution. Figure
elaborated by the author in Julia.

2.3 Markov chains

Markov chains offer a mathematical framework for modeling systems that transition
between states, where the probability of moving to a new state depends only on the
current state, not on the sequence of events that preceded it. This section will cover
essential concepts such as transition matrices, steady-state distributions, and state
classifications. Mastery of these concepts will be crucial for understanding the most
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important theorem in this thesis, which leverages the principles of Markov chains to
analyze complex dynamical systems and their long-term behavior. The content of
this section is taken from [8].

Definition 2.22. ([8]) A Markov chain is a stochastic process that satisfies the
Markov property, which states that the future state depends only on the present
state and not on the sequence of past states. Formally, a discrete-time Markov
Chain is a sequence of random variables {Xn}∞

n=0 defined on a state space S such
that for all n ≥ 0 and all x0, x1, . . . , xn, xn+1 ∈ S,

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn).

The transition probabilities are given by

Pij = P(Xn+1 = j | Xn = i), for i, j ∈ S,

where Pij represents the probability of transitioning from state i to state j in one
step.

The transition matrix of the Markov Chain is

P =


P11 P12 . . . P1m

P21 P22 . . . P2m

... ... . . . ...
Pm1 Pm2 . . . Pmm

 ,

where m = |S| is the size of the state space.

A Markov chain is said to be time-homogeneous if Pij does not depend on n, i.e.,
the transition probabilities are constant over time. This chapter it will consider only
time-homogeneous Markov chains.

Example 2.23. A first Markov Chain. Consider the Markov chain (X0, X1, . . .)
with state space S = {a, b, c, d} and the transition matrix

P =


0.1 0.9 0 0
0.9 0.1 0 0
0 0 0 1
0 0 1 0


This could be represented in a graph called transition graph as follows.
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2.3.1. Irreducible and aperiodic Markov Chains

Figure 2.11: Graph representation of a Markov chain with four states. Figure
elaborated by the autor.

Note that the four states are represented by nodes and the arrows betwenn nodes
depict the possible transition with its respective transition probability.

2.3.1 Irreducible and aperiodic Markov Chains

For many results and applications in Markov theory, certain assumptions about the
Markov chains are required. These conditions are crucial for studying stationary
distributions and understanding the Markov Chain Monte Carlo (MCMC) methods.
In this subsection, it is assumed that all Markov chains under consideration are
homogeneous.

The main idea when a Markov chain is irreducible is centered in the property that
“all states of the chain can be reached from all others”. To make this more precise,
consider the following definitions.

Definition 2.24. (Communication, [8]) Let (X0, X1, . . .) a Markov chain with
finite state space S = {s1, s2, . . . , sk} and transition matrix P ∈ [0, 1]k×k. A state
si communicates with another state sj, written as si → sj if the chain has positive
probability of ever reaching the state sj when we start from the state si. In other
words, si → sj if there exists an n ∈ N such that

P(Xm+n = sj| Xm = si) > 0.
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Definition 2.25. (Intercommunication, [8]) Let (X0, X1, . . .) a Markov chain
with finite state space S = {s1, s2, . . . , sk} and transition matrix P ∈ [0, 1]k×k. A
state si intercommunicates with another state sj, written as si ↔ sj if si → sj and
sj → si.

The definition of intercommunication between states directly implies the notion of
irreducibility in a Markov chain. First, it is easy to prove that this corresponds to
an equivalence relation on the set of states of the chain.

Proposition 2.26. The relation of intercommunication defines an equivalence
relation over the state space of a Markov Chain.

Definition 2.27. (Irreducibility, [8]) A Markov chain (X0, X1, . . .) with state
space S = {s1, s2, . . .} and transition matrix P is said to be irreducible if for all
si, sj ∈ S the states are intercommunicated. In other words, the equivalence relation
↔ only has one equivalence class.

In the transition graph of example 2.23, immediately it could be seen that if the
chain starts in the state a or b, then it is restricted to this states forever, as well as
if the initial state is c or d. This means that the equivalence class of of a is {a, b}
and the class of c is {c, d}.

Definition 2.28. (Aperiodicity, [8]) A Markov chain is said to be aperiodic if
all its states are aperiodic: for all si ∈ S, gcd({n ≥ 1 : (P n)i,i > 0}) = 1. Otherwise
the chain is said to be periodic.

In the example 2.23, it is remarkable that if the chain starts in the state c then the
chain will return every two steps to the same state, therefore, that Markov chain is
periodic.

2.3.2 Stationary distributions

Definition 2.29. (Stationary Distribution, [8]) Let P be a transition matrix of
a Markov chain with state space S. A probability distribution π = (π1, π2, . . . , πk)
(∑k

i=1 πi = 1 and πi ≥ 0) is called a stationary distribution if it satisfies the equation:

πP = π,

meaning that ∑k
i=1 πiPi,j = πj for j = 1, . . . , k. In other words, the stationary

distribution is a distribution that remains unchanged after applying the transition
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matrix P . This means that the probability distribution over the states does not
evolve over time.

Theorem 2.30. (Existence of Stationary Distribution, [8]) Let P be a
transition matrix of a finite Markov chain. If the chain is irreducible and aperiodic
then there exists a stationary distribution π. Specifically, there exists a probability
vector π that satisfies:

πP = π.

Furthermore, the stationary distribution is unique, and the chain converges to this
distribution regardless of the initial state distribution.

Proof. See chapter 5 of [8].

Now, it is important to consider the asymptotic behavior of the probability
distribution vector µ(n) in the step n ∈ N when the chain starts with arbitrary
initial distribution µ(0). That is why it is necessary to define a metric.

Definition 2.31. (Total variation distance, [8]) If ν(1) = (ν(1)
1 , . . . , ν

(1)
k ) and ν(2) =

(ν(2)
1 , . . . , ν

(2)
k ) are probability distributions on S = {s1, . . . , sk}, then we define the

total variation distance between ν(1) and ν(2) as

dTV(ν(1), ν(2)) = 1
2

k∑
i=1

∣∣∣ν(1)
i − ν

(2)
i

∣∣∣ .
If ν(1), ν(2), . . . and ν are probability distributions on S, then we say that ν(n)

converges to ν in total variation as n → ∞, writing ν(n) TV−−→ ν, if

lim
n→∞

dTV(ν(n), ν) = 0.

The constant 1
2 in the definition of the metric is designed to make the total variation

distance dTV take values between 0 and 1.

The main result about convergence to stationarity is stated here below.

Theorem 2.32. (Convergence to stationary distribution, [8,10]) If the Markov
chain is irreducible and aperiodic, then for any initial distribution µ, the distribution
of the chain converges to the stationary distribution π as n → ∞, that is,

µ(n) TV−−→ π.

This means that, in the long run, the system forgets its initial state and settles into
the stationary distribution.
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2.3.3. Reversible Markov Chains

Proof. Consult Chapter 5 of [8].

A collorary of the convergence theorem is the uniqueness of the stationary
distribution.

Theorem 2.33. (Uniqueness of the stationary distribution). Any irreducible
and aperiodic Markov chain has exactly one stationary distribution.

2.3.3 Reversible Markov Chains

Definition 2.34. (Reversible Markov Chain). A Markov chain with transition
matrix P is said to be reversible with respect to a probability distribution π if it
satisfies the detailed balance equations

πiPi,j = πjPj,i, for all i, j ∈ S.

In other words, for any pair of states i and j, the probability of transitioning from
i to j is the same as transitioning from j to i, weighted by the distribution π.

The Markov Chain is said to be reversible if there exists a reversible distribution for
it.

Theorem 2.35. If a Markov chain is reversible with respect to a probability
distribution π, then π is a stationary distribution. Specifically, the detailed balance
equations imply that

πP = π.

Thus, reversibility guarantees the existence of a stationary distribution for the chain.

Proof. The property that πi ≥ 0 for all i is already satisfied. On the other hand,

πj =
k∑

i=1
Pj,i =

k∑
i=1

πjPj,i =
k∑

i=1
πiPi,j.

Then, π is a stationary distribution of the Markov chain.

Example 2.36. Consider the Markov chain defined by the graph in the Figure 2.12,

27



2.3.3. Reversible Markov Chains

Figure 2.12: The transition graph of a reversible Markov chain. Figure elaborated
by the autor.

with transition matrix,

P =


0.4 0.3 0.3
0.3 0.4 0.3
0.3 0.3 0.4

 .

It is easy to see that the transition matrix of this Markov chain is symmetric and
the stationary distribution is π = (1/3, 1/3, 1/3), these two facts implies that the
Markov chain is reversible.
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Chapter 3
Statistical approach to inverse

problems

Statistical inversion methods reframe inverse problems as a quest for information
within a statistical framework. These methods distinguish between directly
observable quantities and unobservable variables, focusing primarily on the latter
when they are of key interest. Unobservable quantities are interconnected through
models, and the aim of statistical inversion is to extract information about these
variables while quantifying the uncertainty associated with them. This is achieved
by incorporating knowledge of the measurement process and prior information about
the unknowns (consult [5,6,7,10]).

The statistical inversion approach relies on four fundamental principles: all variables
in the model are treated as random variables, randomness represents the degree
of information about their realizations, this information is encoded in probability
distributions, and the solution to the inverse problem is the posterior probability
distribution. This framework provides a robust method for integrating uncertainty
into the analysis of inverse problems (see [10]).

As stated above, the main objective in solving an inverse problem is to infer the
parameters of a model based on observed data. Unlike forward problems, which are
typically well-posed and have a unique solution due to the principle of causality,
inverse problems often face multiple solutions or no solution at all. The uncertainty
associated with inverse problems stems from the fact that different models can
predict similar observations, or the data may not be consistent, making the solution
highly non-unique. This non-uniqueness creates a major challenge in extracting
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3. Statistical approach to inverse problems

meaningful conclusions from the data.

One of the critical aspects of dealing with inverse problems is the handling of errors
in the data. For instance, in classical approaches such as the least-squares method,
aim to minimize the sum of squared residuals between the model’s predictions and
the observations. This approach assumes that errors in the data follow a Gaussian
distribution. On the other hand, the least-absolute-values method assumes that the
errors follow a Laplacian distribution. While the least-squares method is widely used
because of its simplicity and computational efficiency, it is less robust in the presence
of large outliers or uncontrolled errors. In contrast, the least-absolute-values method
is more robust to outliers, although it is computationally more complex (see [6]).

In recent years, the Bayesian framework has emerged as a powerful tool for
solving inverse problems, offering a more comprehensive approach to error handling.
Bayesian inference allows the incorporation of prior information about the model
parameters and the uncertainty associated with the data. Rather than seeking
a single "best" solution to the inverse problem, Bayesian methods estimate
the probability distribution of the parameters, given the observed data. This
approach provides a more nuanced understanding of the solution, acknowledging
the inherent uncertainty and the possibility of multiple models that could explain
the observations (a deeper treatment of this topic can be found in [15]).

A key strength of the Bayesian approach is its ability to quantify uncertainty in
a rigorous way. Instead of relying on a single point estimate for the parameters,
Bayesian methods generate a posterior distribution that encapsulates all the possible
values of the parameters, weighted by their likelihood given the data. This
distribution can then be used to make probabilistic predictions and assess the
confidence in the inferred parameters. In situations where the data is noisy
or incomplete, Bayesian methods offer a more reliable framework for drawing
conclusions about the model.

The application of the Bayesian framework to inverse problems also allows for the
inclusion of prior knowledge, which can help constrain the solution and reduce the
non-uniqueness of the problem. In the absence of such prior information, the solution
space may be vast and ambiguous, but Bayesian methods can help focus the search
for solutions in more plausible regions of the parameter space. Moreover, the use of
Bayesian methods in inverse problems has been recognized as a unifying framework
for predictive science, as it bridges the gap between model selection, uncertainty
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3.1. Bayesian Formulation

quantification, and data interpretation (consult [15]).

One of the most significant challenges in the Bayesian approach to inverse problems
is the computational complexity involved in evaluating the posterior distribution,
particularly in high-dimensional parameter spaces. The need to explore all
possible parameter combinations requires sophisticated sampling techniques, such
as Markov Chain Monte Carlo (MCMC) methods or variational inference, which
can be computationally expensive. However, the insights gained from the Bayesian
framework often outweigh the computational cost, especially when dealing with
complex systems where understanding uncertainty is crucial (go to [10]).

In conclusion, the handling of error and uncertainty in inverse problems is one of the
key challenges in scientific modeling. The traditional methods, such as least-squares
and least-absolute-values, provide valuable tools but often fail to account for
the complexities of real-world data, including outliers and non-uniqueness in the
solutions. The Bayesian approach, however, offers a more robust and comprehensive
framework for addressing these issues. By treating the parameters as probability
distributions and incorporating prior knowledge, Bayesian inference allows for more
accurate and reliable solutions to inverse problems, providing a powerful tool for
scientific discovery. This approach not only enhances the interpretation of data but
also enables the inclusion of uncertainty in decision-making, making it a crucial tool
in science. Consult the references [5,6,7,10,15].

3.1 Bayesian Formulation

This section introduces the concept of a data assimilation window, followed by the
dynamical model and its uncertain quantities, and concludes with the definitions of
the model state and the state vector.

The discussion begins with the concept of data assimilation (this section is motivated
by [5]).

Definition 3.1. Data assimilation refers to the process of integrating
observational data into computational models to enhance their accuracy and
predictive capabilities.

To contextualize this concept, it is essential to understand the study space: data
assimilation operates sequentially over defined time intervals known as assimilation
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3.1.1. Model with uncertain inputs

windows. The length and structure of these windows vary depending on the
methodology. Some methods update the model’s solution throughout the entire
window, while others focus on specific time points. Furthermore, certain approaches
treat each assimilation window independently, whereas others propagate information
between consecutive windows, enabling diverse applications and formulations, this
part is extracted from [5].

3.1.1 Model with uncertain inputs

The dynamic process under analysis is represented by a forward model that
incorporates uncertainty within an assimilation window:

z0 = ẑ0 + z′
0,

θ = θ̂ + θ′,

εk = ε+ ε′
k,

zk = m({z0, . . . , zk−1}, θ, qk).

In this model, z0 represents the initial conditions, comprising noise-free values ẑ0

and associated uncertainty z′
0. The vector θ includes uncertain model parameters

with exact values θ̂ and uncertainties θ′. Similarly, the model error ε accounts for
discrepancies resulting from unrepresented phenomena or numerical discretization,
with uncertainty ε′. The system evolves according to the model equation:

zk = m({z0, . . . , zk−1}, θ, εk),

over K time steps within the assimilation window. For simplicity, boundary
conditions and their uncertainties are excluded to avoid additional constraints on
the system.

Definition 3.2. The model state, denoted by zT = (zT
0 , z

T
1 , . . . , z

T
K), refers to the

sequence of state vectors predicted by the model within an assimilation window.
Each zT

k represents the model state at time step k. The model operator m predicts
the model state across the entire assimilation window based on the initial state x0,
model parameters θ, and model error ε, as follows:

z = m({z0, . . . , zk−1}, θ, ε).

The model state is specifically associated with the variables predicted by the
model’s equations and may differ from the general state vector employed in data
assimilation.
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Definition 3.3. The state vector x of the data-assimilation problem is defined
containing all the uncertain quantities that are to be estimated. In the model-state
formulation, the state vector x includes the model state z or a subset (the model
state at the final time step) and the model parameters. In this formulation, the
state vector is expressed as:

xT = (zT , θT ),

where the model error ε is excluded. This approach centers on directly updating
the state of the model. In some cases, the state vector targets only the model
state and in other cases it focuses just the model parameters. In addition to the
elements mentioned above, there is a vector of measurements y, which may exist
in different assimilation windows and represents the measurements taken from the
dynamic system under consideration.

Once the elements involved in a dynamic system have been defined, it is possible to
move on to the relationship with inverse problems and Bayesian inference.

3.1.2 Inverse problems and Bayesian inference

In the context of inverse problems, as stated in the section 2.1.1 of classical
regularization, the objective is to obtain information about a quantity x ∈ Rn

by measuring another quantity y ∈ Rm. This process requires a model for
the dependency between these quantities, typically expressed as (this section
corresponds to the treatment performed in [10]):

y = f(x, ε),

where f : Rn × Rk → Rm represents the model function or measurement
operator, a potentially nonlinear function that maps the model state vector x into
measurement space, and ε ∈ Rk encapsulates the unknown measurement noise.
Since the measured quantity y always contains noise, calibration measurements or
regularization methods are often employed to address this challenge.

In statistical inverse problems, all parameters are treated as random variables,
denoted by capital letters. Consequently, the model becomes:

Y = f(X,E),

where Y , X, and E are random variables. Their associated probability distributions
are interdependent, forming the foundation of the statistical inversion approach.
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Unlike traditional methods, this approach relies on the probability distributions of
the random variables rather than deterministic values. The approach is based on
relations between probability distributions (consult [10,17,18]).

The measured quantity Y is referred to as the observable, while its realization,
Y = yobserved, corresponds to the actual data obtained. Conversely, the quantity X,
which is the primary focus, is termed the unknown.

Before measuring Y , it is assumed that some information about X is available. In
Bayesian theory, this is known as the a priori information of unknown quantities
and is represented as a probability distribution x → πpr(x) called a priori density.
On the other hand, considering that X and Y represent random variables, then they
have a joint density function π(x, y) that is unknown in principle. However, given
that there is a previous knowledge of X encoded in the a priori density, it must be
satisfied that ∫

Rm
π(x, y)dy = πpr(x).

If the value of the unknown is known, i.e., X = x, the conditional probability density
of Y given this information is

π(y|x) = π(x, y)
πpr(x) , if πpr(x) ̸= 0.

The conditional probability of Y is called the likelihood function, as it expresses the
likelihood of different measurement outcomes with X = x given.

Consider finally that the measurement data Y = yobserved is given. The conditional
probability distribution

π(x|yobserved) = π(x, yobserved)
π(yobserved) , if π(yobserved) =

∫
Rn
π(x, yobserved) dx ̸= 0,

is called the posterior distribution of X, πpost(x). This distribution expresses what
is known about X after the realized observation Y = yobserved.

In the Bayesian framework, the inverse problem is expressed as follows:

Given the data Y = yobserved, find the conditional probability distribution
π(x|yobserved) of the variable X is sought.

The notations and results are summarized in the following theorem, referred to as
Bayes’ theorem of inverse problems.
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Theorem 3.4. ([5,10]) Assume that the random variable X ∈ Rn has a known prior
probability density πpr(x) and the data consist of the observed value yobserved of an
observable random variable Y ∈ Rm, such that π(yobserved) > 0. Then, the posterior
probability distribution of X, given the data yobserved, is

πpost(x) = π(x|yobserved) = πpr(x)π(yobserved|x)
π(yobserved) .

In the sequel, y = yobserved will be written, and it is understood that when the
posterior probability density is evaluated, the observed value of y is used.

In the previous equation, the marginal density

π(y) =
∫
Rn
π(x, y) dx =

∫
Rn
π(y|x)πpr(x) dx

acts as a normalizing constant and is generally of little importance (as will be
discussed later). It is important to note that, in principle, π(y) = 0 is possible,
meaning that measurement data could have zero probability. Although this situation
is rare in practice, it would indicate that the underlying models are inconsistent with
reality.

In summary, examining Bayes’ formula, solving an inverse problem involves several
important tasks. First, based on prior information about the unknown X, a prior
probability density πpr that adequately reflects this information must be found.
Next, the likelihood function π(y|x), which describes the relationship between the
observation and the unknown, must be determined. Finally, methods must be
developed to explore the posterior probability density. Each of these steps can
present its own challenges.

Before addressing these issues in more detail, it is important to refer to the classical
inversion methods of how the statistical solution of an inverse problem can be related
to producing unique estimates.

3.1.3 Estimators

The solution of the inverse problem is defined as the posterior distribution. When
the unknown consists of a random variable with few components, the posterior
probability density can be visualized as a nonnegative function of these variables.
However, in most real-world inverse problems, the dimensionality is significantly
large, rendering direct visualization of the posterior distribution impossible. Despite
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this, a known posterior distribution allows for the calculation of various estimates.
Point estimates determine the most probable value of the unknown or the
expectation of the posterior distribution, given the data and prior information.
Interval estimates provide the range in which the unknown lies with a specific
probability, such as 90 %, based on the prior information and the data. Consult
[5,7,10] for further analysis.

Definition 3.5. (Maximum a posteriori, [10]) Given the posterior distribution and
its probability density π(x|y) of the unknown X ∈ Rn the maximum a posteriori
estimation xMAP satisfies

xMAP = argmaxx∈R⋉π(x|y),

assuming that such maximizer exists. Note that nothing ensures the uniqueness of
this estimator and this could be a problem.

Definition 3.6. (Conditional mean, [10]) The conditional mean estimator xCM of
the unknown X conditioned on the data y is defined as

xCM = E(X|y) =
∫
Rn
xπ(x|y)dx,

provided that this integral converges. Find the conditional mean is generally seen
as an integration problem. This leads to Monte Carlo methods for calculate in a
numerical way the result of the integral.

Example 3.7. (Example taken from [6]) Consider the random variable H with the
probability density function π(h) given by the mixture of two normal distribution

π(h) = 4
10

(
1√
2π
e− (h+3)2

2

)
+ 6

10

(
1√
2π
e− (h−3)2

2

)
.

The density of H is shown in the Figure 3.1.

Figure 3.1: Mixture of two normal distribution and its mean and its maximizer
value. Figure elaborated by the author using Julia.
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3.1.4. Likelihood function

As can be seen, the mean of H is E(H) = 4
10(−3) + 6

10(3) = 6
10 = 0.6 and the

maximizer of the function π(h) is h∗ = 3. In the Bayesian framework the former
corresponds to the xMAP estimator while the latter represents the xCM estimator.
It is clear that sometimes these point estimations do not represents adequately the
information of the posterior distribution, for instance, the maximum a posteriori
loses the information about the two modes of the distribution and the conditional
mean does not tell anything about the density.

Definition 3.8. Maximum likelihood. The maximum likelihood estimator xML

satisfies
xML = argmaxx∈R⋉π(y|x).

This estimator seeks to estimate the value of the unknown which is most likely
to produce the data y. This is a non Bayesian (frequentist) estimator and in the
context of inverse problems in quite useless: often it corresponds to solve the inverse
problem without any kind of regularization.

Another approach to estimation is based on intervals. Similar to the frequentist
perspective, these intervals are constructed using a point estimate that defines the
center of the interval and a radius selected to capture a desired level of probability
mass. With a known posterior distribution is easy to construct the interval estimator
in exact way, opposed to frequentist perspective that build this estimators with
asymptotic assumptions (consult [17]).

3.1.4 Likelihood function

The likelihood function contains the forward model used in classical inversion
techniques as well as information about the noise and other measurement and
modelling uncertainties.

3.1.4.1 Modelling noise

Consider the random model
Y = f(X,E)

where X is the unknown value and E denotes the noise, suppose that X and E

are mutually independent, and the model f allows the noise E to be expressed as a
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function g of Y and X in the following way

E = g(X, Y ),

where g has a strong relation with f and the random variables X and Y take values
in the domain of the function g.

Assume that the probability distribution of the noise E is known, that is,

µE(B) = P(E ∈ B) =
∫

B
πnoise(e)de,

where B is a Borel measurable set.

If X = x is fixed, the assumption of mutual independence between X and E ensures
that the probability density of E remains unchanged when conditioned on X = x.
Therefore, it can be deduced that Y , conditioned on X = x, is distributed like E,
with the probability density being modified by g(·, ·). In other words, the likelihood
function is

π(y|x) = πnoise(g(x, y)).

Thus, if the prior distribution of X is πpr(x), then, according to the Bayes’ theorem,

π(x|y) ∝ πnoise(g(x, y))πpr(x).

A slightly more complicated situation arises when the unknown X and the noise
E are not mutually independent. In this case, the conditional density of the noise
must be known, which is given by

µE(B | x) =
∫

B
πnoise(e | x) de.

In this scenario, the following can be written:

π(y | x) =
∫
Rm

π(y | x, e)πnoise(e | x) de.

When both X = x and E = e are fixed, Y is completely determined as Y = y =
f(x, e). Hence,

π(y | x, e) = δ(y − f(x, e)),

where δ represents the Delta Dirac distribution. Substituting this into the previous
formula results in

π(y | x) = πnoise(g(x, y) | x),

and therefore
π(x | y) ∝ πpr(x)πnoise(g(x, y) | x).
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Example 3.9. (Additive noise, example from [10]) If the model is establised as

Y = f(X) + E,

then the model contains additive noise. In this case, the function g is g(x, y) =
y − f(x). If it is assumed the independence between X and E then the likelihood
function is

π(y|x) = πnoise(y − f(x)).

Example 3.10. (Multiplicative noise, example inspired in [6,10]) Consider a simple
real-valued measurement, where the observation model includes multiplicative noise
that is mutually independent of the unknown variable. The stochastic model relating
X ∈ R and Y ∈ R is given by

Y = Ef(X),

where E is a real-valued noise term, and f : R → R. If πnoise represents the
probability density of E, the likelihood function can be expressed as

π(y | x) =
∫
R
δ(y − ef(x))πnoise(e) de

= 1
f(x)

∫
R
δ(y − ν)πnoise

(
ν

f(x)

)
dν

= 1
f(x)πnoise

(
y

f(x)

)
,

where δ denotes the Dirac delta function.

Example 3.11. (Example based in [10]) Consider now the case in which a noisy
measurement is given with an incompletely known forward model. Let A(v) ∈ Rm×n

denote a matrix that depends on a parameter vector v ∈ Rk, and assume that the
deterministic model without measurement noise is y = A(v)x, where y ∈ Rm and
x ∈ Rn. Furthermore, assume that the actual measurement is corrupted by additive
noise that is mutually independent of the unknown X and the parameter V . Thus,
the statistical model in this case becomes

Y = A(V )X + E.

If πnoise is the probability density of E, which is mutually independent of X and V ,
then

π(y | x, v) = πnoise(y − A(v)x).
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Additionally, assuming that V and X are mutually independent and that V has
density πparam, the likelihood density is obtained as

π(y | x) =
∫
Rk
π(y | x, v)πparam(v) dv =

∫
Rk
πnoise(y − A(v)x)πparam(v) dv.

Example 3.12. (Logistic growth model, example from the reference [6]) Consider
the logistic growth model

x′(t) = rx
(

1 − x

K

)
, x(t0) = x0,

where t0 and x0 are known values and r and K are the unknown parameters. The
analytic solution of the previous Cauchy problem is

x(t) = x(t; r,K) = Kx0e
r(t−t0)

K + x0 (er(t−t0) − 1) .

If it is assumed that data is available {(ti, yi)|i = 1, . . . ,m} where ti represents the
time and yi denotes the observation of the state variable x, and these corresponds
with a Poisson model that depends on the mean given by yi = x(ti; r,K), then the
model can be written as

Yt = Poisson(x(t)),

for each time t. Therefore if it is assumed that each component has mutually
independent in fluctuation,

π(y|x) =
m∏

i=1

x(ti)yi

yi!
e−x(ti)

∝ exp(y⊤log(x) − 1⊤x)

where log(x) = [log(x(t1)), . . . , log(x(tm))]⊤ and 1⊤x = x(t1) + . . .+ x(tm).

3.1.5 Prior models

In the statistical theory of inverse problems, constructing the prior density is often
considered the most critical and challenging aspect of the solution. The primary
difficulty lies in the nature of the prior information, which is frequently qualitative
rather than quantitative. The challenge, therefore, involves converting qualitative
knowledge into a quantitative form that can be incorporated into the prior density.
For instance, in subsurface electromagnetic studies, a geophysicist may anticipate
layered structures with nonlayered inclusions or cracks. While a layered model may
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3.1.6. Posterior distribution

capture some of these expectations, it can be overly restrictive, excluding other
relevant structures. Similarly, in medical imaging, a radiologist might search for
a well-localized cancer with a distinctive surface structure, as identified by trained
expertise. These qualitative descriptions provide valuable insights but are difficult
to express within the framework of probability densities (refer to [6,10,17,18]).

The general objective in the design of priors is to specify a density πpr(x) with
the following property. If E represents a collection of expectable vectors x that
correspond to possible realizations of the unknown X, and U represents a collection
of unexpectable ones, the condition should hold that

πpr(x) ≫ πpr(x′) when x ∈ E, x′ ∈ U.

In this way, the prior probability distribution should be concentrated on the values
of x that are expected to be observed, assigning a significantly higher probability to
these values than to those that are not expected to be observed.

In the Table 3.1, a summary of the possible distributions used to select the prior
distribution is presented.

3.1.6 Posterior distribution

The third step in the statistical inversion technique involves developing methods to
explore posterior probability densities. Before delving into these tools in the next
chapter, it is important to consider how the posterior density should be interpreted
in the context of inverse problems. The interpretation of the posterior distribution
as the solution to an inverse problem is a nuanced matter. Fully understanding its
meaning requires a clear grasp of credibility sets and intervals, also, a deep knowledge
of the phenomena. (consult [10,17])

The example 3.13 is one that develops some intuition of the interpretation of the a
posteriori distribution and also shows how estimation errors can occur when an a
priori distribution is chosen.

Example 3.13. (Example extracted of [10]) Consider the following trivial inverse
problem: determine the value of x ∈ R by directly measuring x with some additive,
mutually independent noise. The statistical model is given by

Y = X + E.
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Table 3.1: Summary of distributions commonly used as a priori distributions.
Table elaborated by the autor and inspired in [18].
Support Parameters Mean Variance Use

Binomial {0, 1, . . . , n} n, p np np(1 − p) Discrete
data
modeling

Poisson {0, 1, 2, . . . } λ > 0 λ λ Counting
Uniform [a, b] a, b ∈ R, a < b a+b

2
(b−a)2

12 Non
informative
priors

Normal R µ ∈ R, σ2 > 0 µ σ2 Modeling
continuous
data

Lognormal (0, ∞) µ, σ2 > 0 eµ+σ2/2 (eσ2 − 1)e2µ+σ2 Skewed
continuous
data

Cauchy R x0 ∈ R, γ > 0 Undefined Undefined Robust
modeling

Laplace R µ ∈ R, b > 0 µ 2b2 Sharp peak
data

Gamma (0, ∞) α > 0, β > 0 α
β

α
β2 Modeling

rates or
waiting
times

Beta [0, 1] α > 0, β > 0 α
α+β

αβ
(α+β)2(α+β+1) Modeling

proportions
Exponential [0, ∞) λ > 0 1

λ
1

λ2 Modeling
waiting
times

Assume that the prior probability density of X is zero-mean Gaussian with unit
variance, while the density of the noise E is zero-mean Gaussian with variance σ2.
Consequently, the posterior probability density of X is

π(x | y) ∝ exp
(

−1
2x

2 − 1
2σ2 (y − x)2

)
.

This density is Gaussian with respect to x, as will be discussed below. By completing
the square and ignoring factors that depend only on y, it follows that for given data y,

π(x | y) ∝ exp
(

−1 + σ2

2σ2

(
x− y

1 + σ2

)2
)
.

From this expression, the point estimators xCM and xMAP , and variance γ2 of X
can be directly identified as

xMAP = xCM = y

1 + σ2 , γ2 = σ2

1 + σ2 .
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3.1.7. Gaussian environment

Figure 3.2: Posterior distribution of the unknown X given different values of σ
with measured value y = 2. Figure elaborated by the author.

It is noteworthy that the posterior distribution is influenced by the value of the
parameter σ in the prior distribution. As the value of this parameter increases, the
distance between the point estimations and the measured data becomes larger, and
the variance also increases. Note that the point estimations move forward the mean
of the a priori distribution when σ becomes larger (consult the references [10,17]).

3.1.7 Gaussian environment

Gaussian probability densities have a special role in statistical inversion theory.
First, they are relatively easy to handle and therefore they provide a rich source of
tractable examples. But more importantly, due to the central limit theorem (consult
appendixes and the references [10,18]), the Gaussian densities are often very good
approximations to inherently non-Gaussian distributions when the observation is
physically based on a large number of mutually independent random events.

Definition 3.14. Let x0 ∈ Rn and Γ ∈ Rn×n be a symmetric positive definite
matrix, denoted by Γ > 0 in the sequel. A Gaussian n-variate random variable X
with mean x0 and covariance Γ is a random variable with the probability density

π(x) = 1
(2π)n/2|Γ|1/2 exp

(
−1

2(x− x0)T Γ−1(x− x0)
)
,

where |Γ| = det(Γ). In such a case, we use the notation X ∼ N(x0,Γ).
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The following result concerning the conditional probability densities of Gaussian
random variables will be stated.

Theorem 3.15. ([17,18]) Let X : Ω → Rn and Y : Ω → Rk be two Gaussian
random variables whose joint probability density π : Rn × Rk → R+ is of the form

π(x, y) ∝ exp

−1
2

x− x0

y − y0

⊤ Γ11 Γ12

Γ21 Γ22

−1 x− x0

y − y0


 ,

where Γ11 ∈ Rn×n and Γ22 ∈ Rk×k. Then the probability distribution of X
conditioned on Y = y, π(x | y) : Rn → R+, is of the form

π(x | y) ∝ exp
(

−1
2(x− x̄)⊤Γ̃−1

22 (x− x̄)
)
,

where
x̄ = x0 + Γ12Γ−1

22 (y − y0),

and
Γ̃22 = Γ11 − Γ12Γ−1

22 Γ21,

is the Schur complement of Γ22 with respect to Γ.

Now, a result on the marginal distribution could be enunciated taking into account
the above theorem.

Theorem 3.16. ([17,18]) Let X and Y be Gaussian random variables with joint
probability density given by

π(x, y) ∝ exp

−1
2

x− x0

y − y0

⊤ Γ11 Γ12

Γ21 Γ22

−1 x− x0

y − y0


 .

Then the marginal density of X is

π(x) =
∫
Rk
π(x, y) dy ∝ exp

(
−1

2(x− x0)⊤Γ−1
11 (x− x0)

)
.

Example 3.17. Inverse linear problem. Consider the linear model with additive
noise,

Y = AX + E

where A ∈ Rm×n is a known matrix, and X : Ω → Rn, Y,E : Ω → Rm are random
variables. It is assumed that X and E are mutually independent Gaussian variables
with probability densities

πpr(x) ∝ exp
(

−1
2(x− x0)T Γ−1

pr (x− x0)
)
,
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and
πnoise(e) ∝ exp

(
−1

2(e− e0)T Γ−1
noise(e− e0)

)
.

Using this information, Bayes’ formula yields that the posterior distribution of x
conditioned on y is

π(x | y) ∝ πpr(x)πnoise(y − Ax)

∝ exp
(

−1
2(x− x0)T Γ−1

pr (x− x0) − 1
2(y − Ax− e0)T Γ−1

noise(y − Ax− e0)
)
.

The explicit form of the posterior distribution can be calculated from this expression.
However, the factorization approach derived in the previous theorem avoids the
tedious matrix manipulations required by a brute-force method. Since X and E are
Gaussian, Y is also Gaussian, with

E

X
Y

 =
x0

y0

 , y0 = Ax0 + e0.

Additionally, since
E
[
(X − x0)(X − x0)T

]
= Γpr,

E
[
(Y − y0)(Y − y0)T

]
= E

[
(A(X − x0) + (E − e0))(A(X − x0) + (E − e0))T

]
= AΓprA

T + Γnoise,

and furthermore,

E
[
(X − x0)(Y − y0)T

]
= E

[
(X − x0)(A(X − x0) + (E − e0))T

]
= ΓprA

T ,

it follows that

cov
X
Y

 = E


X − x0

Y − y0

X − x0

Y − y0

T
 =

 Γpr ΓprA
T

AΓpr AΓprA
T + Γnoise

 .
Therefore, the joint probability density of X and Y is given by

π(x, y) ∝ exp

−1
2

x− x0

y − y0

T  Γpr ΓprA
T

AΓpr AΓprA
T + Γnoise

−1 x− x0

y − y0


 .

Inspired by the previous example, the following result is mentioned.
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Theorem 3.18. ([17]) Assume that X : Ω → Rn and E : Ω → Rm are mutually
independent Gaussian random variables,

X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise),

and Γpr ∈ Rn×n and Γnoise ∈ Rk×k are positive definite. Consider the linear model

Y = AX + E

for a noisy measurement Y , where A ∈ Rk×n is a known matrix. Then the posterior
probability density of X given the measurement Y = y is

π(x | y) ∝ exp
(

−1
2(x− x̄)⊤Γ−1

post(x− x̄)
)
,

where
x̄ = x0 + ΓprA

⊤(AΓprA
⊤ + Γnoise)−1(y − Ax0 − e0),

and
Γpost = Γpr − ΓprA

⊤(AΓprA
⊤ + Γnoise)−1AΓpr.

Note that for assuming a Gaussian prior distribution and a Gaussian noise, then
x = xMAP = xCM in the linear model, by the behavior of the Gaussian distribution.

Example 3.19. (Example from [10]) Consider the simple case in which the prior
has covariance proportional to the identity matrix and mean zero, that is, X ∼
N(0, γ2I). This prior is referred to as the Gaussian white noise prior. Similarly,
assume that the noise is white noise, E ∼ N(0, σ2I). In this specific case, the
following holds:

x = γ2AT (γ2AAT + σ2)−1y = AT (AAT + αI)−1y,

where α = σ2

γ2 . By using the singular value decomposition of the matrix A, it is
straightforward to verify that

x = AT (AAT + αI)−1y = (ATA+ αI)−1ATy.

Thus, the centerpoint of the posterior distribution corresponds to the Tikhonov
regularized solution of the equation Ax = y, with regularization parameter α, see
the section 2.1.1.2. This re-interpretation provides additional insight into the choice
of the parameter α: it is the ratio of the noise variance to the prior variance.
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Chapter 4
Markov Chain Monte Carlo methods

This chapter explores the use of Markov chain Monte Carlo (MCMC) methods
for addressing inverse problems through posterior probability distributions. While
abstract definitions of solutions in terms of posterior distributions are foundational,
practical applications require tools to effectively explore these distributions.
Traditional numerical integration methods, such as quadrature, are computationally
infeasible for high-dimensional parameter spaces and rely on prior knowledge of
the distribution’s support, which is often unavailable. MCMC methods offer
an alternative by generating sample points guided by the probability density
itself, enabling approximate integration through Monte Carlo techniques. This
approach provides a powerful framework for overcoming computational challenges
in high-dimensional spaces. In order to see a wide approach, consult [10,17].

4.1 Basic ideas

Let µ be a probability measure defined over Rn. Additionally, consider a scalar or
vector-valued measurable function f , which is integrable over Rn with respect to µ,
meaning that f ∈ L1(µ(dx)). The goal is to estimate the integral of f with respect
to µ. In numerical quadrature methods, a collection of support points xj ∈ Rn,
where 1 ≤ j ≤ N , is selected along with corresponding weights wj to approximate
the integral: ∫

Rn
f(x)µ(dx) ≈

N∑
j=1

wjf(xj).

Quadrature methods are generally designed to achieve high accuracy for functions
belonging to a finite-dimensional function space, which is often composed of
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polynomials up to a certain degree.

In the case of Monte Carlo integration, the support points xj are randomly sampled
from a probability density, and the weights wj are determined according to the
measure µ. Ideally, these points should be sampled directly from the probability
distribution associated with µ. Specifically, let X ∈ Rn be a random variable
whose probability distribution corresponds to µ. If a random generator capable
of producing independent realizations of X were available, it would be possible to
generate a representative set of points distributed according to µ. Assuming that
{x1, x2, . . . , xN} ⊂ Rn forms such a sample set, the integral of f can be approximated
using the average (consult the references [10,12,18]):

∫
Rn
f(x)µ(dx) = E[f(X)] ≈ 1

N

N∑
j=1

f(xj).

Example 4.1. For instance, consider the integral
∫ 1

0
1
12(x− 1

2)2dx = 1. This integral
can be seen as an expectation of the function f(x) = 1

12(x − 1
2)2 over the measure

given by the uniform distribution over the interval (0, 1). A number n of sample
random points xi with i = 1, . . . , n are generated from the distribution U(0, 1) and
then the following expectation is calculated E[f(X)].

Figure 4.1: Monte Carlo integration for the integral
∫ 1

0
1
12(x− 1

2)2dx. Figure
elaborated by the author.

As can be seen in the Figure 4.1, as more points are sampled over the interval (0, 1)
the integral converges to its true value. This example just illustrates the importance
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and ease of use of Monte Carlo methods. The applicability of this type of methods
is much more useful in high dimensional problems.

Markov Chain Monte Carlo (MCMC) methods provide a systematic approach to
generating a sample ensemble that satisfies this approximation. To achieve this,
fundamental concepts from probability theory are required (consult [17]).

Definition 4.2. ([10,17]) Let S denote a σ-algebra defined over Ω. A function

P : Ω × S → [0, 1]

is called a probability transition kernel if:

1. For every B ∈ S, the mapping x 7→ P (x,B) is a measurable function over Ω.

2. For each x ∈ Ω, the function B 7→ P (x,B) defines a probability distribution.

To get a better intuition of the above definition, consider the following examples.

Example 4.3. Consider the time-homogeneous Markov chain {Xn : n ∈ N} given
by the transition graph shown in the figure 4.2.

Figure 4.2: Transition graph of a Markov chain with three states. Figure
elaborated by the author.

Let Ω = {a, b, c} the state set and S := {X|X ⊆ Ω} a σ-algebra defined over Ω as
the power set. For every x ∈ Ω and B ∈ S, consider

P (x,B) = P(Xn+1 ∈ B | Xn = x),

49



4.1. Basic ideas

for any value of n ∈ N. The function P corresponds to a probability transition
kernel:

• If B = {a, b} is fixed then the map x 7→ P (x,B) is a measurable function
since:

P−1{[0, x]} =



∅ 0 ≤ x < 0.5

{a} 0.5 ≤ x < 0.7

{a, b} 0.7 ≤ x < 0.9

Ω 0.9 ≤ x ≤ 1

• If x = a is fixed the the map B 7→ P (x,B) is a random variable and it is fully
described by the following equalities:

P (a, ∅) = 0, P (a, {a, b}) = 0.5,
P (a, {a}) = 0, P (a, {b, c}) = 1,

P (a, {b}) = 0.5, P (a, {a, c}) = 0.5
P (a, {c}) = 0.5, P (a,Ω) = 1.

Example 4.4. Consider a time-homogeneous Markov chain {Xn : n ∈ N} where
the property

P(Xn+1 ∈ B | Xn = x) =
∫

B
f(x′|x)dx′,

where B is a Borel set over Rn and f is a probability density funcion of the Normal
distribution with mean µ = x and variance σ2 = x2 + 1 (in that manner, x can be
seen as a parameter). This conditional probability allows to construct a probability
transition kernel.

Definition 4.5. A discrete-time stochastic process is an ordered sequence {Xj}∞
j=1 of

real random variables Xj ∈ Rn. A time-homogeneous Markov chain with transition
kernel P is a stochastic process {Xj}∞

j=1 satisfying the property:

µXj+1(Bj+1|x1, . . . , xj) = µXj+1(Bj+1|xj) = P (xj, Bj+1),

where µX is the measure given by the random variable X. This condition states
that the probability of Xj+1 belonging to Bj+1, given prior observations X1 =
x1, . . . , Xj = xj, depends only on the most recent state Xj = xj. This property
is often summarized by the statement that "the future depends on the past only
through the present."
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It is still necessary to introduce a few concepts regarding the transition kernels,
this objects are satisfies analogues properties and definitions with respect a matrix
of a Markov chain with a finite state space. Similar to the section 2.3, given a
probability measure µ, the transition kernel P is said to be irreducible (with respect
to µ) if for each x ∈ Rn and B ∈ B with µ(B) > 0, there exists an integer k such that
P (k)(x,B) > 0. This means that, irrespective of the starting point, the Markov chain
generated by the transition kernel P will visit any set of positive measure with a
positive probability. Let P be an irreducible kernel. It is said that P is periodic if, for
some integer m ≥ 2, there exists a set of disjoint nonempty sets {E1, . . . , Em} ⊂ Rn

such that for all j = 1, . . . ,m and all x ∈ Ej, we have P (x,Ej+1(mod m)) = 1. In
other words, a periodic transition kernel generates a Markov chain that remains in
a periodic loop indefinitely. A kernel P is termed aperiodic if it is not periodic.
Consult the section 2.3 for further treatment.

The following result is of significant importance for MCMC methods. The proof of
this theorem will be omitted (this proof can be encountered in [10,17]).

Theorem 4.6. Let µ be a probability measure on Rn and {Xj} a time-homogeneous
Markov chain with transition kernel P . Assume that µ is an invariant measure of the
transition kernel P , and that P is irreducible and aperiodic. Then, for all x ∈ Rn,

lim
N→∞

P (N)(x,B) = µ(B) for all B ∈ B,

where P (N) means the composition of P a number of N times, and for f ∈ L1(µ(dx)),

lim
N→∞

1
N

N∑
j=1

f(Xj) =
∫
Rn
f(x)µ(dx) almost surely.

This theorem provides a clear indication of how to explore a given probability
distribution: it is necessary to construct an invariant, aperiodic, and irreducible
transition kernel P , and then draw a sequence of sample points x1, x2, . . . using this
kernel. This will be the central part of the following section.

4.2 Metropolis-Hastings algorithm

Let µ denote the target probability distribution in Rn that the sampling algorithm
seeks to explore. To avoid measure-theoretic complexities, it is assumed that
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µ is absolutely continuous with respect to the Lebesgue measure, i.e., µ(dx) =
π(x)dx. The goal is to determine a transition kernel P (x,B) such that µ is its
invariant measure. This section is based on [10,12,17].

Let P represent any transition kernel. For a given point x ∈ Rn, it is postulated
that the kernel either proposes a move to another point y ∈ Rn or it proposes no
move from x. This allows the kernel to be decomposed into two parts:

P (x,B) =
∫

B
K(x, y) dy + r(x)χB(x),

where χB is the characteristic function of the set B ∈ B. Although K(x, y) ≥ 0 is
a density, K(x, y)dy can be interpreted as the probability of moving from x to the
infinitesimal set dy at y, while r(x) ≥ 0 represents the probability that x remains
stationary. The characteristic function χB(x) appears because if x /∈ B, the only
way for x to reach B is by making a move.

The condition P (x,Rn) = 1 implies that

r(x) = 1 −
∫
Rn
K(x, z) dz.

For µ(dx) = π(x)dx to be an invariant measure of P , the identity

µP (B) = µ(B),

and that implies

µP (B) =
∫
Rn
P (x,B)µ(dx)

=
∫
Rn
P (x,B)π(x)dx (µ is absolutely continuous)

=
∫
Rn

[∫
B
K(x, y) dy + r(x)χB(x)

]
π(x)dx (decomposition of P )

=
∫
Rn

∫
B
K(x, y)dydx+

∫
Rn
r(x)χB(x)π(x)dx (linearity)

=
∫
Rn

∫
B
K(x, y)dydx+

∫
B
r(x)π(x)dx (definition of χB)

=
∫
Rn

∫
B
K(x, y)dydx+

∫
B
r(y)π(y)dy (change of variable)

=
∫

B

∫
Rn
K(x, y)dxdy +

∫
B
r(y)π(y)dy, (Fubini theorem)
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thus ∫
B

∫
Rn
K(x, y)dxdy +

∫
B
r(y)π(y)dy =

∫
B
π(y)dy∫

B

∫
Rn
K(x, y)dxdy =

∫
B
π(y)(1 − r(y))dy

must hold for all B ∈ B, implying

π(y)(1 − r(y)) =
∫
Rn
π(x)K(x, y) dx.

By formula r(x) = 1 −
∫
Rn K(x, z) dz, this is equivalent to∫

Rn
π(y)K(y, x) dx =

∫
Rn
π(x)K(x, y) dx.

This condition is known as the weak balance equation. In particular, if K satisfies
the detailed balance equation

π(y)K(y, x) = π(x)K(x, y)

for all pairs x, y ∈ Rn, then the weak balance equation is automatically satisfied. The
decomposition of the transition kernel P and the detailed balance equations form the
foundation for constructing the Markov chain transition kernels used in stochastic
sampling. In the Metropolis–Hastings algorithm, the goal is to construct a transition
kernel K that satisfies the detailed balance equation (according to [10,17]).

Let q : Rn × Rn → R+ be a given function with the property that
∫
Rn q(x, y) dy =

1. The kernel q is called the proposal distribution or candidate-generating
kernel, for reasons explained later. Such a function q defines a transition kernel

Q(x,A) =
∫

A
q(x, y) dy.

If q satisfies the detailed balance equation, then define K(x, y) = q(x, y), r(x) = 0,
and the task is complete. Otherwise, it is necessary to adjust the kernel by a
multiplicative factor and define

K(x, y) = α(x, y)q(x, y),

where α is a correction term to be determined. Assume that for some x, y ∈ Rn,
instead of detailed balance,

π(y)q(y, x) < π(x)q(x, y).
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The objective is to choose α so that

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y).

This is achieved by setting

α(y, x) = 1, α(x, y) = π(y)q(y, x)
π(x)q(x, y) < 1.

By swapping x and y, it is observed that the kernel K defined by K(x, y) =
α(x, y)q(x, y) satisfies the detailed balance equations if α is defined as

α(x, y) = min
(

1, π(y)q(y, x)
π(x)q(x, y)

)
.

This transition kernel is called the Metropolis–Hastings kernel.

The above derivation does not provide much insight into the implementation of the
method. Fortunately, the algorithm is relatively simple in practice, typically carried
out through the following steps (taking the ideas of [10,17]):

1. Pick the initial value x1 ∈ Rn and set k = 1.

2. Draw y ∈ Rn from the proposal distribution q(xk, y) and calculate the
acceptance ratio

α(xk, y) = min
(

1, π(y)q(y, xk)
π(xk)q(xk, y)

)
.

3. Draw t ∈ [0, 1] from the uniform probability distribution.

4. If α(xk, y) ≥ t, set xk+1 = y, otherwise set xk+1 = xk. When k = K, the
desired sample size is reached, and the process stops. Otherwise, increment k
to k + 1 and return to step 2.

Before presenting some examples, a few remarks are in order. First, if the
candidate-generating kernel is symmetric, i.e.,

q(x, y) = q(y, x) for all x, y ∈ Rn,

then the acceptance ratio simplifies to

α(x, y) = min
(

1, π(y)
π(x)

)
.

54
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Thus, moves that go towards higher probabilities are accepted immediately, while
some moves that take us to lower probabilities may also be accepted. When the
candidate-generating kernel is symmetric, this kernel is called Metropolis kernel.

An important yet challenging issue is the stopping criterion, i.e., how to decide when
the sample size is sufficient. This question, as well as convergence issues in general,
will be addressed later through an example.

Example 4.7. (Example inspirated in [10]) Consider the function

f(x, y) = − 1
20

[( 1
10x

2 − y
)2

+ 1
5(x2 + y2)

]

and suppose that the distribution π(x, y) is proportional to exp(f(x, y)). The
contour plot is shown in the following figure.

Figure 4.3: Contour plot of the function exp(f(x, y)). Figure elaborated by the
author using Julia (consult the repository [21]).

The Metropolis Hastings algorithm will be run with 10000 iterations taking into
account that the candidate-generating kernel is selected as a multivariate normal
distribution centered on the last accepted sample and with variance equal to a fixed
scalar multiple (δ = 0.1) of the identity matrix and, the initial point is (−15, 15).
The results are shown in the figures below.

When the candidate-generating kernel is chosen as a normal distribution centered on
the last accepted sample and with fixed variance the algorithm is called Metropolis
Hastings Random Walk (MHRW) (according to [17]).
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4.2. Metropolis-Hastings algorithm

Figure 4.4: Point cloud plot to visualize the samples obtained from the MH
execution. Figure elaborated by the author using Julia (consult the repository

[21]).

Figure 4.5: Random walks of the variables and theirs respectives histograms.
Figure elaborated by the author using Julia (consult the repository [21]).
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Note that the figure 4.4 shows that most of the samples are located where the largest
values of the function exp(f(x, y)) are found, and the histograms show the marginal
distributions of the random variables X and Y . This method refers to random walks
since the values of the random variables of interest follow an erratic path when the
algorithm is executed, as can be seen in the graphs of the Figure 4.5.

Figure 4.6: Log-density function evaluated in the samples from the distribution
π(x, y) ∝ exp(f(x, y)). Figure elaborated by the author using Julia (consult the

repository [21]).

Figure 4.6 shows that the probabilities of the samples as each iteration progresses
have a stabilization period, something that could indicate convergence of the
MH algorithm (see [17]).

Figure 4.7: Convergence plot of the sampling mean in both random variables.
Figure elaborated by the author using Julia (consult the repository [21]).
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4.2. Metropolis-Hastings algorithm

Finally, the figure 4.7 shows the above theorem 4.6 by calculating the difference
between the sample means for consecutive iterations of the algorithm. As can be
seen, the convergence of this algorithm is efficient since it does not need too many
iterations. If it is fitted an exponential model AeB·iterations to the difference between
sample means, the parameter B represents the convergence rate of this algorithm,
as mentioned in [17].

Another important information to give from the algorithm is the acceptance rate,
which was 94.27 % for this algorithm run.

Example 4.8. (Mixture of Gaussians) Consider the functions

f1(x, y) = 1
50[(x− 5)2 + (y − 5)2] and f2(x, y) = 1

50[(x+ 10)2 + (y + 5)2]

and suppose that a density function satisfies π(x, y) ∝ exp(−f1(x, y)) +
exp(−f2(x, y)). The MHRW algorithm will be executed over this density with 10000
iterations, initial point (20,−20) and with the parameter δ taking different values
in the set {0.01, 0.25, 0.5, 1}. The result is shown in the Figure 4.8.

Figure 4.8: MHRW algorithm executed in a mixture of Gaussian with different
variances. Figure elaborated by the author using Julia (consult the repository [21]).
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As can be seen, different values for the δ parameter affect the motion of the
Markov chain by restricting the step length. For example for δ = 0.01 the path
has little mobility and this is reflected in samples that do not correspond to the
target distribution.

The two examples above show something that is important to highlight. Note that
the MH algorithm has a period where it “drifts” in the distribution space until it
approaches and stays in the regions with the highest probability density. This period
is called the warm-up (or burning) period and is usually taken as 10 % of the
total iterations and samples obtained during this period are discarded (see [17]).

4.2.1 Gibbs sampler

This description of the method is based on [8,10]. A variant of the sampling
algorithm is obtained when the candidate-generating kernel is defined using the
density π directly along with a block partitioning of the vectors in Rn. Let
I = 1, 2, . . . , n be the index set of Rn, and consider a partitioning of this set into
m disjoint nonempty subsets, denoted by I = ⋃m

j=1 Ij. Each subset Ij contains kj

elements, such that kj = #Ij, ensuring that k1 + · · · + km = n. This partitioning
allows Rn to be expressed as the Cartesian product Rn = Rk1 × · · · × Rkm .
Consequently, any vector x ∈ Rn can be written as

x = [xI1 ; . . . ;xIm ] ∈ Rn, xIj
∈ Rkj .

The notation x−Ij
is introduced to denote the vector x with the elements

corresponding to the subset Ij removed

x−Ij
= [xI1 ; . . . ;xIj−1 , xIj+1 ; . . . ;xIm ].

This convention simplifies notation when working with conditional distributions. If
the random variable X ∈ Rn follows the probability density function π, then the
conditional probability density of the block XIi

given all other blocks is expressed as

π(xIi
| x−Ii

) = Ciπ(xI1 , . . . , xIi−1, xIi
, xIi+1, . . . , xIm),

where Ci is a normalization constant. Using this formulation, the transition kernel
K is defined as

K(x, y) =
m∏

i=1
π(yIi

| yI1 , . . . , yIi−1 , xIi+1 , . . . , xIm).
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4.2.1. Gibbs sampler

This kernel does not generally satisfy the detailed balance condition, but it satisfies
a weaker balance condition, which is sufficient for convergence.

To implement the Gibbs sampler algorithm, the following steps are performed:

1. Select an initial value x1 ∈ Rn and set k = 1.

2. Set x = xk. For 1 ≤ j ≤ m, sample yIj
∈ Rkj from the conditional distribution:

π(yIj
| yI1 , . . . , yIj−1 , xIj+1 , . . . , xIm).

3. Set xk+1 = y. If k = K, the desired sample size is reached, and the procedure
terminates. Otherwise, increment k → k + 1 and repeat from step 2.

The fundamental distinction between the Gibbs sampler and the MH algorithm
lies in the acceptance criterion: while the latter algorithm requires an
acceptance-rejection step, the former always accepts the proposed sample.
However, drawing from the conditional distributions in the Gibbs sampler can be
computationally intensive, depending on the complexity of π.

Example 4.9. Suppose that π(x, y) ∝ exp(−f(x, y)) where

f(x, y) = − 1
20(x2y2 + x2 + y2 − 8x− 8y).

Note that the marginal distributions fulfill that

π(x|y) = g(y) exp
−y2 + 1

20

(
x− 4

1 + y2

)2
 ,

π(y|x) = g(x) exp
(

−x2 + 1
20

(
x− 4

1 + x2

)2)
.

These marginal distributions corresponds to normal distributions that are easy to
sample:

x|y ∼N
(
µ = 4

1 + y2 , σ =
√

10
1 + y2

)

y|x ∼N

µ = 4
1 + x2 , σ =

√
10

1 + x2

 .
The contour plot of the distribution is shown in Figure 4.9.
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4.2.1. Gibbs sampler

Figure 4.9: Contour plot of the distribution π. Figure elaborated by the author
using Julia (consult the repository [21]).

Some of the samples obtained from the algorithm are shown in the Figure 4.10. It is
important that the update in each iteration is done component by component, as
reflected in the graph. Further comments on this sampling method will be made in
the example 4.10.

Figure 4.10: Some samples from the Gibbs sampler algorithm. Figure elaborated
by the author using Julia (consult the repository [21]).
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4.2.2 Two-walk

This method is a modification of the MHRW and is inspired by the t-walk algorithm
in [16]. For a given objective function, such as a posterior distribution, denoted by
π(x) for x ∈ X, where X is an n-dimensional subset of Rn, a new objective function
is constructed as f(x, x+) = π(x)π(x+) in the corresponding product space X ×X.
While a general proposal follows the form q{(y, y+)|(x, x+)}, the approach considers
two restricted proposals:

(y, y+) =

(x, h(x+, x)), with probability 0.5,

(h(x, x+), x+), with probability 0.5,

where h(x, x+) represents a random variable used to form the proposal. This implies
that, at each step, only one of x or x+ is modified. However, rather than considering
two independent parallel chains in X, the entire process remains within the product
space X ×X. Four distinct proposals are randomly selected, each characterized by
a specific function h(·, ·). The procedure involves first selecting an option from the
previous equation and then generating the proposal (y, y+) by sampling from the
corresponding h function.

Within the Metropolis-Hastings framework, it is necessary to compute the
acceptance ratio. Defining g(·|x, x+) as the density function of h(x, x+), the
acceptance ratio is given by:

q{(y, y+)|(x, x+)} = π(y+)
π(x+)

g(x+|y+, x)
g(y+|x+, x)

for the first case, and

q{(y, y+)|(x, x+)} = π(y)
π(x)

g(x|y, x+)
g(y|x, x+)

for the second case. Notably, restricting the proposal to h ensures that only a single
evaluation of the target density is required in either scenario.

In this method the candidate-generating kernel is the Gaussian distribution with
mean the first argument of the function h and variance equal to the distance between
the two arguments of the function h plus some fixed parameter δ0.

62



4.2.2. Two-walk

Example 4.10. (Comparison between MCMC methods (similar to examples
in [10,17])) The three MCMC methods are executed for the example 4.9. The
following table shows the result of convergence rates for the mean of X, the mean
of Y and the mean of the joint distribution of the vector (X, Y ).

Table 4.1: Comparison of rate of convergence of the three methods of sampling.
Table elaborated by the author.

Rate convergence Metropolis-Hastings Gibbs sampler Two-walk
X -1.07 -0.99 -0.91
Y -1.03 -0.97 -1.01

(X, Y ) -1.05 -0.98 -0.96

From the Table 4.1, it can be seen that, in this example, the Metropolis-Hastings
algorithm performs better. The following two figures (4.11 and 4.12) first show
the logarithm of the probabilities of the selected samples, and then compare the
histograms for X and Y obtained from the three methods.

Figure 4.11: Difference of the log-probabilities of the samples in each algorithm.
Figure elaborated by the author using Julia (consult the repository [21]).
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4.2.2. Two-walk

Figure 4.12: Histogram of the samples obtained in each MCMC method. Figure
elaborated by the author using Julia (consult the repository [21]).

The parameter δ of the MH algorithm is fixed in δ = 0.2 and the parameter δ0 of
the Two-walk algorithm is taken equal to δ0 = 1. The acceptance rate of the MH
is 82.72 % while the acceptance rate of the Two-walk algorithm is 38.09 %; this
difference in acceptance rates indicates that the Two-walk algorithm moves faster
to the region with higher probability density compared to the MH algorithm.
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Chapter 5
Applications

The use of Markov Chain Monte Carlo (MCMC) methods has proven to be a
powerful tool in various applications where parameter space exploration is essential.
This chapter presents different problems in which these approaches are particularly
useful, including parameter estimation in ordinary differential equation (ODE)
models, optimization via exploration, and least squares fitting. Furthermore, the
application of these methods in the calibration of the TOMGRO model, which
is used to study crop growth, is analyzed, highlighting its description, the data
employed, and the obtained results (consult each application for the references).

5.1 Optimization via exploration

Optimization via exploration is a strategy that seeks optimal solutions by iteratively
adjusting parameters based on an exploratory search of the parameter space.
A key aspect of this method is the adjustment factor α, which introduces a
“discrete gradient” that directs the exploration process toward an optimal point.
This mechanism allows the algorithm to navigate the parameter space efficiently,
balancing exploration and convergence. To illustrate these concepts, examples in
both one and two dimensions will be presented, demonstrating how the choice of
α influences the optimization trajectory and the final solution. Unlike the other
sections, some of the examples presented in this section will not make use of
Bayesian inference (this section is proposed by the author and collaborators).
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5.1. Optimization via exploration

Consider the minimization problem

min
x∈Ω⊆Rn

f(x)

One approach to solving this problem using Markov Chain Monte Carlo (MCMC)
methods is to employ the Metropolis algorithm by considering a distribution that
satisfies the following proportionality

π(x) ∝ exp(−βf(x)),

where β > 0 is a parameter specifically chosen for each function f .

In the Metropolis algorithm, the acceptance probability α is given by

α(x,y) = min
(

1, π(y)
π(x)

)
.

Utilizing the fact that π(x) ∝ exp(−βf(x)), the acceptance probability α can be
rewritten as

α(x,y) = min (1, exp(−β[f(y) − f(x)])) .

The term [f(y)−f(x)] in this expression will be referred to as the “discrete gradient”
, as it quantifies the absolute change of the function f between the points x and y.

In some cases, the feasible space Ω can be explored using the candidate-generating
kernel Q, leading to constrained minimization problems. The following examples
illustrate the application of this approach in one and two dimensions, incorporating
Bayesian inference in certain cases.

Example 5.1. Consider the function

f(x) =
(3x

10

)4
+ 10 sin

(3π
10x

)
,

and consider the problem of minimizing this function over the whole set R.
If the distribution π(x) ∝ exp(−βf(x)) is taken with β = 1

10 and, run the
Metropolis algorithm with 10000 iterations, initial point x0 = 20 and normal
candidate generating kernel with variance δ = 5, obtaining the results shown in
the figure below.

66



5.1. Optimization via exploration

Figure 5.1: Result of the Metropolis algorithm in an optimization problem. Figure
elaborated by the author using Julia (consult [21]).

Consider the same minimization problem but now restricting the domain to the
positive values of the decision variable using Bayesian inference: consider the a
posteriori distribution πpost(x) proportional to the product of the term exp(−βf(x))
(β = 1

10) and the a priori distribution πpr(x) taken as a Gamma distribution with
scale parameter 2 and shape parameter 1.

If the Metropolis algorithm is executed with 10000 iterations, initial point x0 = 20
and normal candidate generating kernel with variance δ = 5, the results shown in
the figure below are obtained.

Figure 5.2: Result of the Metropolis algorithm in an optimization problem mixed
with Bayesian inference. Figure elaborated by the author using Julia (consult [21]).

In the previous example, the condition that x > 0 may have been taken into
account by starting from a positive initial point in the algorithm and also using a
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5.1. Optimization via exploration

candidate-generating kernel that only generates proposals that satisfy the conditions
of the feasible set of the optimization problem.

In the following example, a discrete feasible set is taken, i.e., it only takes values in
the set Z. The Metropolis algorithm is going to be executed with 10000 iterations
and with the candidate-generating kernel

Qx = B + x− n,

where n ∈ N (in this case n = 10) is a parameter and B is random variable
with distribution Binomial

(
2n, p = 1

2

)
and mean E(Qx) = x, this proposal seeks

to generate a symmetrical and unimodal distribution around a fixed point. Note
that

q(y | x) = P(Qx = y) = P(B = y − x+ n) = P(Qy = x) = q(x | y),

then the Metropolis algorithm can be executed over the distribution π(x) ∝
exp(−βf(x)) is taken with β = 1

10 . The results are shown in Figure 5.3.

Figure 5.3: Result of the Metropolis algorithm in an optimization problem with
restricted domain. Figure elaborated by the author using Julia (consult [21]).

Example 5.2. Consider the minimization problem

min
x,y∈R

f(x, y)

with
f(x, y) = sin(πx/3) + cos(πx/3) + 0.025(x2 + y2 − xy) + 1.
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Running the Metropolis algorithm with 30000 iterations and candidate-generating
kernel a bivariate normal distrution with variance δI = I, it is obtained information
about local minima of the function and it is also evident that a greater sampling is
done on the global minimum, as shown in Figure 5.4.

Figure 5.4: Result of the Metropolis algorithm in an optimization problem in two
dimensions. Figure elaborated by the author using Julia (consult [21]).

5.2 Least squares

Least squares is a fundamental technique for fitting models to data, particularly
in the context of linear models with additive error. This section explores the
classical formulation of least squares and its connection to Bayesian inference.
Specifically, it is shown that Bayesian estimation naturally leads to a form of
regularization equivalent to Tikhonov regularization. Additionally, an example
of linear regression is presented to illustrate these concepts and their practical
implications (this application comes from [10]).

Formally, given a system represented as:

Ax ≈ b,

where A ∈ Rm×n is a known matrix, b ∈ Rm is a known vector, and x ∈ Rn is
the unknown vector to be determined, the least squares solution is obtained by
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5.2. Least squares

minimizing the objective function:

min
x

∥Ax − b∥2.

Theorem 5.3. Suppose A has full column rank. The minimization problem

min
x

∥Ax − b∥2,

has a unique solution and is given by x∗ = (A⊤A)−1A⊤b.

Proof. The least squares problem aims to minimize the function

f(x) = ∥Ax − b∥2.

Expanding the norm, this is equivalent to minimizing

f(x) = (Ax − b)⊤(Ax − b).

Taking the gradient with respect to x:

∇f(x) = 2A⊤(Ax − b).

Setting this equal to zero to find the critical point:

A⊤Ax = A⊤b.

Since A has full column rank, the matrix A⊤A is invertible, and solving for x gives
the unique solution:

x∗ = (A⊤A)−1A⊤b.

Thus, the least squares problem has a unique solution as stated.

In the context of Bayesian inference for the least squares problem (see [5,7]), the
above minimization problem is considered as a problem of estimating the distribution
of variable X given knowledge of a realization of variable Y and assuming an error
E with some known distribution, all of these quantities related by the model

Y = AX + E,

where A is a known and fixed matrix (according to [10]).

As stated in Section 3.1.4.1, the likelihood function is defined as

π(x|y) = πnoise(y − Ax)

for this model, and the prior distribution is selected depending on the context of the
problem, typically, this prior is either a normal distribution or a uniform distribution.
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5.2. Least squares

Example 5.4. Consider the matrix

A =


3.0 −1.0 −1.0

−1.0 2.0 0.0
−1.0 0.0 2.0


and consider the vector ye = y0+e where ye = (−7.0, 4.0, 2.0)⊤ and e is a realization
of the multivariate normal distribution Normal

(
µ = (0.0, 0.0, 0.0)⊤,Σ = 0.22 I

)
;

the unique solution to the problem Ax = y0 is the vector x0 = (−2.0, 1.0, 0.0)⊤.
When ye = (−7.025, 3.972, 1.755)⊤ the solution to the linear system is xe =
(−2.080, 0.945, −0.162)⊤, this solution can also be obtained by the maximum
likelihood method assuming normality.

Figure 5.5: Result of the Metropolis algorithm in a linear least squares problem.
Figure elaborated by the author using Julia (consult [21]).

The likelihood distribution will be taken as y | x ∼ Normal(µ = Ax,Σ = I) and
the a priori distribution is going to be x ∼ Normal(µ = 0.0, 0.0, 0.0)⊤,Σ =

71



5.3. Parameter Estimation for Dynamical Systems

52I). Applying the Metropolis Hastings algorithm with 25000 iterations and
candidate-generating kernel with variance equal to δI = 5I, the results shown in the
figure below are obtained. As stated above in the Example 3.19, theoretically the a
posteriori distribution is

x | y ∼ Normal(µ = A⊤A+ αI)−1A⊤y,Σ = 1
α
I − A⊤(AA⊤ + αI)−1)A

where α = 1
52 = 1

25 is the ratio of the noise variance to the prior variance.

In the corner below the main diagonal of the previous graph the densities of the
samples obtained for each pair of random variables are shown, in the diagonal the
histograms are placed and in the corner above the diagonal the convergence of
the sample correlation statistic is shown together with the value obtained when
calculating it in all the samples.

The acceptance rate of the algorithm is 89.02 % and some statistics are:

xMAP = (−2.080, 0.945, −0.162)⊤ xCM = (−2.037, 0.976, −0.128)⊤.

5.3 Parameter Estimation for Dynamical
Systems

This section presents a general overview of parameter estimation in dynamical
systems using Bayesian inference combined with Markov Chain Monte Carlo
(MCMC) methods. This approach provides a robust framework for model
calibration, accounting for measurement errors and incorporating data variability.
By considering these uncertainties, the estimated models can be effectively used for
prediction while maintaining a realistic representation of the system dynamics (all
concepts and methods presented here are based on [6,10]).

To illustrate these concepts, an example using recurrence relations will be presented.
Additionally, several case studies involving ordinary differential equations will be
explored, employing both simulated and real data.

The procedure for calibrating models given by dynamic systems using some MCMC
method is shown in the diagram below (the process described here is inspired in [6]).
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Figure 5.6: Use of the MH algorithm in the estimation of the parameters of a
model. Diagram elaborated by the author.

The Figure 5.6 illustrates the implementation of the Metropolis-Hastings (MH)
algorithm for parameter estimation in a model. The process begins with the
identification of a set of parameters that define the model’s behavior. These
parameters play a crucial role in characterizing the system and ensuring that the
model accurately represents the underlying phenomena. Once the parameters are
established, numerical methods—chosen based on their efficiency and computational
feasibility—are employed to generate the model outputs. Since many models rely
on complex mathematical formulations, selecting appropriate numerical methods is
essential to reduce computational costs while maintaining accuracy.

Following the computation of model outputs, a data assimilation process is
performed to compare these outputs with observed data, allowing for the evaluation
of the model’s predictive capability. To refine the estimation process, Bayesian
inference is applied to determine the acceptance of newly generated samples. This
step provides the algorithm with probabilistic knowledge of the target distribution,
ensuring that the generated samples follow the desired statistical properties. If
a sample is accepted, it is incorporated into the iterative process; otherwise, a
new sample is proposed, and the cycle continues. This iterative procedure is
repeated until convergence is achieved, ensuring an optimal estimation of the model
parameters and improving the model’s overall reliability (consult [6,7,10]).
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Example 5.5. (Logistic growth) This example is based on [6] and is constructed
using simulated data. The logistic population growth model is considered over a time
span of 60 years. A total of 60 data points are generated under the assumption that
the true parameter values are r0 = 0.2 and K0 = 0.75. These data points are then
perturbed by introducing multiplicative noise drawn from a Gamma distribution,
specifically Γ(α = 100, β = 1/100). The objective is to estimate the parameters
(r0, K0) using the Metropolis-Hastings algorithm, as previously discussed.

Given population growth data over time, it is assumed that the population follows
a logistic growth model described by the equation:

dx(t)
dt

= rx
(

1 − x

1000K

)
, x(0) = x0 = 20

where r represents the population growth rate, K is the carrying capacity of the
environment in which the population resides, and x0 is the initial population size.
The exact solution to this initial value problem is given by

x(t) = 1000x0K

x0 + (1000K − x0)e−rt
.

The inverse problem under consideration aims to estimate the values of r and K

based on observations {zℓ}k
ℓ=0 of the state variable x(t, θ) at time points {tℓ}k

ℓ=0.

To apply the Metropolis Hastings Random Walk (MHRW) algorithm to this inverse
problem, prior distributions are assigned to the parameters r and K. Specifically,
each parameter follows a Gamma distribution, i.e., r ∼ Γ(ar, br) and K ∼ Γ(aK , bK).
Additionally, independence between both parameters is assumed, leading to the joint
prior distribution

Θ ∼ Γ(ar, br) × Γ(aK , bK).

The Gamma distribution Γ(a, b) has a probability density function given by

f(x; a, b) = xa−1e−x/b

Γ(a)ba
, x > 0.

The data points zℓ are observed at times tℓ for ℓ ranging from 1 to k. Since these
observations represent population counts, it is assumed that

zi ∼ Poisson(x(ti, θ)),

where θ = (r,K). Defining z = (z1, . . . , zk), and assuming that the observations are
independent and follow a Poisson distribution, the likelihood function πZ|Θ(z|θ) is
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given by the product of Poisson density functions

π(z|θ) =
k∏

i=1
f(zi;x(ti, θ)) =

k∏
i=1

e−x(ti,θ)(x(ti, θ))zi

zi!
.

By Bayes’ theorem, the posterior distribution is given by

π(θ|z) ∝ πZ|Θ(z|θ) × πΘ(θ)

=
k∏

i=1

e−x(ti,θ)(x(ti, θ))zi

zi!
× Γ(ar, br)(r) × Γ(aK , bK)(K).

The Metropolis Hastings Random Walk algorithm is applied starting from a random
point in the set, with a total of 10000 samples and a Gaussian candidate generating
kernel with variance equal to σ2 = 0.1; as a result, the two figures below are shown.

Figure 5.7: Point cloud plot of applying the MH algorithm in parameter estimation
of the logistic model. Figure elaborated by the author using Julia (see [21]).

Figure 5.7 presents the scatter plot obtained from the algorithm, with histograms
of the estimated parameters r and K displayed along the margins. It is evident
that, under this execution of the algorithm and the assumptions made in the
Bayesian inference process, the parameter K exhibits greater variability compared
to r. Additionally, it is important to note that both distributions are unimodal and
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closely centered around the true parameter values, (r0, K0) = (0.2, 0.75). One way
to verify this proximity to the actual values is by observing that

θMAP = (0.2283, 0.7318) and θCM = (0.2325, 0.7372).

Figure 5.8: Result of applying the MH algorithm in parameter estimation of the
logistic model. Figure elaborated by the author using Julia (see [21]).

Figure 5.8 illustrates the results obtained from the execution of the
Metropolis-Hastings Random Walk (MHRW) method. In this plot, the black
diamonds represent the initial data points. The black dashed curve corresponds
to the model with the true parameter values. The blue and red curves depict
the outcomes of the point estimates of the conditional mean and the maximum a
posteriori, respectively. Additionally, the gray curves represent the solutions of the
ordinary differential equation for the parameter samples generated by the algorithm.
This method facilitates the assessment of the model’s error and variability relative
to the data.

Example 5.6. (Lokta-Volterra model [14]) Consider the model discussed in
Examples 2.15 and 2.18. Similarly to the previous example, 21 data points are
simulated over a period of 20 years and modified with multiplicative Gamma noise.
The MHRW algorithm is executed under the assumption that all parameters have
a uniform prior distribution over the interval (0, 1). The likelihood function follows
a normal distribution with variance σ2 = 0.1. Additionally, 10,000 iterations are

76



5.3. Parameter Estimation for Dynamical Systems

performed using a Gaussian candidate generating kernel with a variance of 0.05.
The results are shown in the Figures 5.9 and 5.10.

Figure 5.9: Histograms of applying the MH algorithm in parameter estimation of
the predator-prey model. Figure elaborated by the author using Julia (see [21]).

Figure 5.10: Results of applying the MH algorithm in parameter estimation of the
predator-prey model. Figure elaborated by the author using Julia (see [21]).

Considering that the parameters used to generate the data were

[α, β, γ, δ] = [0.7, 0.3, 0.8, 0.2],

the obtained point estimates are:

[α, β, γ, δ]MAP = [0.6420, 0.2657, 0.8616, 0.2079],

[α, β, γ, δ]CM = [0.6625, 0.2840, 0.8354, 0.2060].

Additionally, an acceptance rate of 38.03% was obtained.

Example 5.7. (SIR model) This example is inspired by [1] and extracts data
from that article and the methods from [6]. The spread of the Spanish flu in San
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Francisco from 1918 to 1919 is modeled using the following system of differential
equations:

Ṡ = µN − β
I

N
S − ξS − µS,

İ = β
I

N
S + ξS − γI − µI,

Ṙ = γI − µR,

where N = S + I + R and Ṅ = 0. The parameters µ, ξ,N, and γ are assumed
to be known. The objective of this model is to estimate the basic reproduction
number R as well as the parameters β, I(0), and R(0). The presented model
includes both known and unknown parameters, each with a specific epidemiological
interpretation. The known parameters are: µ, representing the birth and natural
mortality rate, which ensures a constant total population (Ṅ = 0); ξ, denoting the
incidence rate of external infections due to contacts with external populations; N ,
the total population size, assumed to remain constant over time; and γ, the recovery
rate, which defines the rate at which infected individuals transition to the recovered
category. The unknown parameters to be estimated are: β, the transmission rate,
which quantifies the probability of disease spread from an infected individual to a
susceptible one; I(0), the initial number of infected individuals at the beginning of
the analyzed period, essential for model calibration; and R(0), the initial number of
recovered individuals, which represents those who have already gained immunity
before the study period. Additionally, the basic reproduction number R is a
key epidemiological metric, defined as R = β

γ
, indicating the average number of

secondary infections generated by a single infected individual in a fully susceptible
population. If R > 1, the infection tends to spread within the population, whereas
if R < 1, the outbreak naturally declines. These unknown parameters must be
inferred from observational data using statistical or Bayesian inference methods,
such as the Metropolis-Hastings algorithm. The data are shown in Figure 5.11.

The explicit Euler method is used as the numerical approach to solve the SIR
model. In [1], a point estimate of the data was obtained using a squared error
minimization algorithm, where each estimated value was considered as the mean
of a Gamma distribution to define the prior distribution, assuming independence
among the unknown parameters. Since the cases represent non-negative integer
values resulting from an infection response, the Poisson distribution was selected as
the likelihood function for the data given the parameters. The MHRW algorithm
was executed with 15000 iterations using a Gaussian kernel with variance σ2 = 1.
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The point estimates obtained were RMAP = 0.0446 and RCM = 0.7848, with an
acceptance rate of 35.29%. The results are presented in Figure 5.12.

Figure 5.11: Data of reported cases extracted from [1]. Figure elaborated by
the author using Julia (see [21]).

Figure 5.12: Result of applying the MHRW algorithm for estimating the
reproduction rate R in the SIR model. Figure created by the author using Julia

(see [21]).
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5.4 TOMGRO Model

The TOMGRO model is a mathematical framework designed to simulate the growth
dynamics of tomato crops under varying environmental conditions based on a model
of ordinary differential equations and recurrence relations. This section provides an
overview of its structure, the data used for calibration, and the results obtained from
its application. This application is based on [4] and [9].

5.4.1 Model Description

This subsection outlines the fundamental equations governing the TOMGRO
model, including the biological and environmental factors that influence plant
growth. The key parameters and assumptions underlying the model formulation
are also discussed.

Figure 5.13: Schematic of the overall development and the actual growth of tomato
plant state variables in TOMGRO. The direction of the arrows indicates causal

effects, and the ∗ indicates an effect of one or more environmental variables on the
process rates. Figure elaborated by the author and inspired in [9].

The TOMGRO model is a dynamic simulation model designed to represent the
growth and development of tomato plants under greenhouse conditions. It is based
on source-sink relationships and incorporates an age-structured representation of
state variables. The primary objective of TOMGRO is to predict the growth and
yield of tomato plants in response to varying environmental conditions, including
temperature, solar radiation, and carbon dioxide concentration.
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The model characterizes the tomato plant through seven state variable vectors that
include physiological age classes of plant components: number of leaves, number
of main stem segments, number of fruits, dry weights of leaves plus petioles, dry
weights of main stem segments, dry weights of fruits, and leaf area. Plant growth
occurs through changes in these numbers, weights, and areas across different age
classes of each component. The model assumes that only the main vegetative stem
is considered, with all vegetative branches being removed as soon as they are formed,
which is a common practice in greenhouse tomato production systems (see [4,9]).
Additionally, the plants are assumed to be well-watered and adequately fertilized
to focus solely on the influence of environmental conditions on growth dynamics.
The growth of the tomato plant in TOMGRO is determined by the interaction
between carbon supply and demand. Carbon supply is derived from photosynthesis,
while carbon demand is dictated by the sink strength of different plant organs.
The partitioning of assimilates follows a source-sink approach, where different plant
organs compete for available resources based on their physiological needs. The
demand for carbon is calculated based on the developmental stage of the plant and
the relative sink strength of each organ, ensuring a realistic representation of dry
matter allocation throughout the plant’s life cycle.

The model operates on two time loops. The main loop advances time daily,
while a fast loop increments time on an hourly basis or even more frequently if
required. Within the fast loop, instantaneous environmental conditions such as
temperature, CO2 concentration, and photosynthetic photon flux density (PPFD)
are computed. These environmental variables influence key physiological processes,
including development rates, photosynthesis, and respiration. At the end of each
day, the accumulated changes in state variables are updated, ensuring that the
growth dynamics reflect the cumulative impact of environmental conditions over
time (consult [4]).

TOMGRO’s structure allows it to respond dynamically to changing environmental
conditions, making it a valuable tool for optimizing greenhouse management
strategies. By incorporating real-time environmental data, the model can simulate
plant responses with high temporal resolution, which is crucial for decision-making
in controlled agricultural environments. The explicit representation of plant
components in age classes enables accurate predictions of growth stages and
biomass accumulation. Moreover, the integration of physiological mechanisms
governing carbon assimilation, respiration, and biomass allocation provides a
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comprehensive framework for understanding the complex interactions that drive
tomato plant growth (consult [4,9]).

The TOMGRO model represents a significant advancement in greenhouse crop
modeling by offering a detailed, dynamic, and mechanistic approach to simulating
tomato growth. Its ability to incorporate environmental variability and its
structured representation of plant components make it a robust tool for researchers
and agronomists seeking to improve productivity and resource use efficiency
in controlled environments. The model’s application extends beyond academic
research, as it can be utilized for practical greenhouse management, optimizing
environmental control strategies, and enhancing tomato yield predictions. By
leveraging TOMGRO, growers can make informed decisions regarding temperature
regulation, CO2 enrichment, and light management to maximize plant performance
and overall production efficiency (according to [4]).

The following is a description of the model at the mathematical level. Let m be
the number of age classes in the model (typically m = 20 according to [4] and [9]).
Consider the seven state variables that describe the model

• Number of stems: NS = (NS,1, . . . , NS,m).

• Number of leaves: NL = (NL,1, . . . , NL,m).

• Number of fruits: NF = (NF,1, . . . , NF,m).

• Weight of stems: WS = (WS,1, . . . ,WS,m).

• Weight of leaves: WL = (WL,1, . . . ,WL,m).

• Leaf area: AL = (AL,1, . . . , AL,m).

• Weight of fruits: WF = (WF,1, . . . ,WF,m).

For the organs stems, leaves, and fruits, the following dynamics are considered:

(S)



dNS,1
dt

= s1,1NS,1 − s1,2N
2
S,1

dNS,i

dt
= si−1,2N

2
S,i−1 + si,1NS,i − si,2N

2
S,i for i = 2, . . . ,m,

dWS,1
dy

= ws,1,1NS,1WS,1 − ws,1,2NS,1W
2
S,1

dWS,i

dy
= ws,i−1,2NS,i−1W

2
S,i−1 + ws,i,1NS,iWS,i − ws,i,2NS,iW

2
S,i for i = 2, . . . ,m,
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5.4.1. Model Description

(L)



dNL,1
dt

= l1,1NL,1 − l1,2N
2
L,1

dNL,i

dt
= li−1,2N

2
L,i−1 + li,1NL,i − li,2N

2
L,i for i = 2, . . . ,m,

dWL,1
dy

= wl,1,1NL,1WL,1 − wl,1,2NL,1W
2
L,1

dWL,i

dy
= wl,i−1,2NL,i−1W

2
L,i−1 + wl,i,1NL,iWL,i − wl,i,2NL,iW

2
L,i for i = 2, . . . ,m,

dAL,1
dy

= al,1,1NL,1AL,1 − al,1,2NL,1A
2
L,1

dAL,i

dy
= al,i−1,2NL,i−1AL,i−1 + al,i,1NL,iAL,i − al,i,2NL,iA

2
L,i for i = 2, . . . , ,m

(F )



dNF,1
dt

= f1,1NF,1 − f1,2N
2
F,1

dNF,i

dt
= fi−1,2NF,i−1 + fi,1NF,i − fi,2N

2
F,i for i = 2, . . . ,m,

dWF,1
dy

= wf,1,1NF,1WF,1 − wf,1,2NF,1W
2
F,1

dWF,i

dy
= wf,i−1,2NF,i−1WF,i−1 + wf,i,1NF,iWF,i − wf,i,2NF,iW

2
F,i for i = 2, . . . ,m,

The expressions oi,k, wo,i,k, and ao,i,k for o ∈ {s, l, f} are functions that depend
on time and some interactions between the state variables; this work will not
emphasize these functions since they depend on the model and the interpretation of
the phenomenon, including external environmental conditions and the relationship
between the supply and demand for resources of the environment and the plant,
respectively. These can be found in [4] and [9]. A simplification of this model is to
assume all the aforementioned expressions as constants.

To summarize the previous equations, given an organ O of the plant under
consideration, let NO represent the number of occurrences of the organ in the plant,
and some biological quantity of interest CO such as weight, length, volume, or area.
The model can thus be described as follows: Given an organ O and a number of age
classes m, the dynamics of this organ are governed by:

(O)



dNO,1
dt

= o1,1NO,1 − o1,2N
2
O,1

dNO,i

dt
= oi−1,2N

2
O,i−1 + oi,1NO,i − oi,2N

2
O,i for i = 2, . . . ,m,

dCO,1
dt

= co,1,1NO,1CO,1 − co,1,2NO,1C
2
O,1

dCO,i

dt
= co,i,0NO,i−1C

2
O,i−1 + co,i,1NO,iCO,i − co,i,2NO,iC

2
O,i for i = 2, . . . ,m,

(5.1)

where the coefficients accompanying the state variables in all the differential
equations are functions that depend on time (and potentially other state variables
associated with other organs).
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5.4.2 Data

The dataset employed for model calibration and validation is described, detailing the
sources, measurement techniques, and preprocessing steps. Special attention is given
to the treatment of uncertainties and potential sources of error in the recorded data.

In this thesis, two types of data are used, as described below:

Simulated data. Following the dynamics described by Equation 5.1, data for a
single organ with 2 age classes is generated using a numerical method that solves
the coupled ordinary differential equations and the recurrence relation between both
age classes. The model can be described by the following equations:

(P )



dNP,1
dt

= p1,1NP,1 − p1,2N
2
P,1

dNP,2
dt

= p1,2N
2
P,1 + p2,1NP,2 − p2,2N

2
P,2

dCP,1
dt

= cp,1,1NP,1CP,1 − cp,1,2NP,1C
2
P,1

dCP,2
dt

= cp,1,2NP,1C
2
P,1 + cp,2,1NP,2CP,2 − cp,2,2NP,2C

2
P,2

The model can be represented by the Figure 5.14.

Figure 5.14: Representation in compartments of the TOMGRO model with one
organ and two age classes. All parameters are represented in color red. Figure

created by the author.

The data are modeled using the following parameter values:

• Time in the interval t ∈ [0.0, 3.0] with a step size of dt = 0.02 for the
Euler method.
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• Initial values of the state variables:

Variable Initial Value Interpretation
NP,1 1.15 Initial number of early-stage fruits
NP,2 0.55 Initial number of late-stage fruits
CP,1 0.15 Initial mass of early-stage fruits (M)
CP,2 0.25 Initial mass of late-stage fruits (M)

• Constant parameters in the ODE system:

Parameter Value Interpretation Units (months, M)
p1,1 2.0 Rate of early-stage

fruit appearance
Fruits / month

p1,2 0.5 Transition rate from
early to late-stage
fruits

1 / month

p2,1 0.9 Retention rate of
late-stage fruits

Fruits / month

p2,2 0.2 Loss rate of late-stage
fruits

1 / month

cp,1,1 1.2 Biomass accumulation
rate in early-stage
fruits

M / (fruit·month)

cp,1,2 0.8 Biomass transfer
rate from early to
late-stage fruits

M / (fruit·month)

cp,2,1 0.3 Biomass accumulation
rate in late-stage
fruits

M / (fruit·month)

cp,2,2 0.4 Biomass loss rate in
late-stage fruits

M / (fruit·month)

By contaminating the Euler method solution of the differential equation system with
additive noise from a Gamma distribution Γ(α = 50, β = 1/50), the data presented
in table 5.1 and figure 5.15 are obtained.
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t NP,1 NP,2 CP,1 CP,2
0.0 1.15 0.55 0.15 0.25
0.3 1.60842 0.965384 0.202569 0.267582
0.6 3.25006 1.61237 0.413811 0.326375
0.9 2.40355 2.81359 0.537287 0.566242
1.2 2.85006 4.04979 1.00676 1.01483
1.5 4.08752 5.45348 1.28428 1.72505
1.8 2.94283 6.73463 1.30162 1.90091
2.1 4.11737 7.66144 1.26689 1.68079
2.4 3.4853 11.818 1.24081 1.99446
2.7 4.66976 10.2074 1.54236 2.60436
3.0 3.42531 7.73761 1.4128 1.99732

Table 5.1: Simulated values of NP,1, NP,2, CP,1 and CP,2 depending on time t.
Table created by the author.

Figure 5.15: Plot of the solution curves of the differential equation system and the
simulated data based on these curves. Figure created by the author.

Real data. Real data from the plant’s phenology (i.e., some plant measurements)
are used, including plant height in centimeters, the number of leaves, the total leaf
area of the plant, and the number of clusters on the plant. All of this is measured
over a period of 147 days, starting on March 8, 2023, and ending on August 2, 2023,
with a total of 88 measurements taken every 22 days. Some of the data are presented
in Table 5.2.
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Index Date Plant height (cm) Number of leaves Total leaf area (m2) Number of clusters
1 2023-03-08 66.0 15 2.268 0
2 2023-03-08 62.0 15 1.566 0
3 2023-03-08 65.0 17 2.5432 0
4 2023-03-08 68.0 16 1.6128 0
5 2023-03-15 86.0 16 3.168 0
6 2023-03-15 77.0 16 2.9184 0
7 2023-03-15 83.0 19 3.1008 0
8 2023-03-15 88.0 18 3.0528 0
9 2023-03-22 117.0 18 1.548 0

10 2023-03-22 101.0 17 4.6665 0
11 2023-03-22 111.0 20 2.496 0
12 2023-03-22 115.0 20 2.94 0
13 2023-03-29 147.0 21 3.2571 1
...

...
...

...
...

...
77 2023-07-19 435.0 22 1.1594 14
78 2023-07-19 342.0 9 0.3276 9
79 2023-07-19 415.0 34 1.972 15
80 2023-07-19 358.0 21 1.3167 13
81 2023-07-25 449.0 22 2.2572 15
82 2023-07-25 352.0 10 0.54 10
83 2023-07-25 427.0 18 0.6048 15
84 2023-07-25 371.0 21 0.84 13
85 2023-08-02 473.0 23 2.0424 16
86 2023-08-02 361.0 9 0.36 11
87 2023-08-02 445.0 15 0.945 16
88 2023-08-02 389.0 21 1.6632 14

Table 5.2: Plant measurement data obtained from [21,23]. Table created by the
author.

As can be seen, several measurements were taken on the same date from different
tomato plants of the same "Clanio" family. To account for this information, an
average is calculated for the daily measurements of each recorded variable, resulting
in the data shown in Figure 5.2.

Given that there is insufficient data to calibrate the TOMGRO model as described
in the previous section, the following model is proposed for the four state variables,
following the dynamics of Equation 5.1, considering the following state variables:

• Plant height H.

• Number of leaves on the plant NL.

• Total leaf area AL.

• Number of clusters NC .
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Figure 5.16: Graphs of variables measured on tomato plants over a harvest period.
Figure prepared by the author using Julia (consult [21]).

The dynamics governing these variables are as follows

dH

dt
= h, (L)


dNL

dt
= l

dAL

dy
= a

,
dNC

dt
= c.

The parameters in the system of equations represent constants that govern the
growth dynamics of different state variables in the model. h is the rate of change
of the plant height H over time, capturing how fast the plant grows in height. This
parameter reflects the intrinsic growth potential of the plant. l represents the rate at
which the number of leaves NL changes, which is an important factor in determining
the leaf production rate. This parameter influences the overall leaf structure of the
plant, which is critical for photosynthesis and overall plant development. a is the rate
of change of the total leaf area AL, which quantifies the expansion of the plant’s leaf
surface area over time. This is a key factor in understanding the plant’s capacity to
capture sunlight and nutrients. Finally, c indicates the rate of change of the number
of clusters NC , which represents the formation of reproductive structures or clusters
within the plant. This parameter helps describe the plant’s ability to produce new
clusters over time. Together, these parameters define the growth dynamics of the
plant in terms of height, number of leaves, leaf area, and reproductive structures,
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providing a comprehensive view of the plant’s development process (consult the
references [4,9]).

5.4.3 Results

The outcomes of the model calibration and its predictive capabilities are presented.
The results are analyzed in the context of their agreement with observed data,
highlighting the strengths and limitations of the approach.

5.4.3.1 With simulated data

For the likelihood function, a multivariate normal distribution is assumed (which
implies additive noise in the model), with mean given by the solution of the system
of ODEs for certain parameter values and variance Σ = γ2I, where γ = 1/100. For
the prior distributions, uniformity is assumed over the interval (−2.5, 2.5) for all
parameters, which in turn implies independence. The MHRW algorithm is executed
for these data with a total of 50,000 iterations using a Gaussian candidate-generating
kernel with variance σ2 = 0.01, taking the origin as the initial point.

Figure 5.17: Histograms obtained by executing the MHRW algorithm in the model
calibration with simulated data. In the histograms, the black line represents the
parameter value used to construct the simulation data, the blue line shows the

conditional mean value, and the red line indicates the maximum a posteriori value.
Figure created by the author using Julia (see [21]).
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Figure 5.18: On the left, the log-density of the samples is shown, while on the
right, the plot of the successive differences of the mean of the estimated

parameters in logarithmic scale is displayed. Both graphs depend on the number of
iterations. Figure created by the author using Julia (see [21]).

Figure 5.19: This figure presents the dynamics of the point statistics for the data
obtained from the model’s state variables. The black points represent the data, the
gray line corresponds to the solution given by the initial parameters, the red line
represents the maximum a posteriori estimator, and the blue line corresponds to

the conditional mean estimator. Figure created by the author using Julia (see [21]).
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Figures 5.17, 5.18, and 5.19 illustrate the results of applying the MCMC method
to model calibration. The histograms reveal that the point estimates align well
with the initial parameter values, indicating a proper execution of the algorithm.
Additionally, the unimodal shape of the histograms suggests that the method
stabilizes and converges to a specific region in the parameter space.

Moreover, the convergence plots show that the probability of the samples stabilizes
as the number of iterations increases. Likewise, the mean of the parameters exhibits
convergence, as the successive differences progressively decrease with a convergence
rate of −0.8974. This behavior confirms the convergence of the MHRW algorithm.
The sample acceptance rate is 70.29%.

Finally, the dynamics of the TOMGRO model are plotted against the point estimates
obtained from the sampling process. Overall, the model accurately fits the data.

The prior-weighted likelihood π(Data|Parameters)π(Parameters) results in the
following values:

π(Data|MAP parameters)π(MAP parameters)
π(Data|Real parameters)π(Real parameters) ≈ 8.1575,

and,
π(Data|CM parameters)π(CM parameters)
π(Data|Real parameters)π(Real parameters) ≈ 3.1915,

indicating that both point estimators exhibit higher probability in the posterior
distribution of the parameters compared to the true parameter values.

5.4.3.2 With real data

As in the previous case, for the likelihood function, a multivariate normal
distribution is assumed (which implies additive noise in the model), with mean given
by the solution of the system of ODEs for certain parameter values and variance
Σ = γ2I, where γ = 1/10. For the prior distributions, uniformity is assumed over
the interval (−2.5, 2.5) for all parameters, which in turn implies independence.
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Figure 5.20: Histograms obtained by executing the MHRW algorithm in the model
calibration with real data. In the histograms, the black line represents the

parameter value used to construct the simulation data, the blue line shows the
conditional mean value, and the red line indicates the maximum a posteriori value.

Figure created by the author using Julia (see [21]).

The MHRW algorithm is executed for these data with a total of 5000 iterations using
a Gaussian candidate-generating kernel with variance σ2 = 10−6, taking the solution
to the linear system as the initial point. Figures 5.20, 5.21, and 5.22 illustrate the
results of applying the MCMC method to model calibration with real data. The
acceptance rate is 99.91 % and the convergence rate is -0.0882.

The model seems to be inadequate for simulating the data, or the data may not
meet the necessary assumptions to apply the calibration method, as no obvious
trends were found between the data and the model results. It is expected to obtain
higher quality and more extensive data in order to carry out a proper and consistent
calibration of the TOMGRO model.
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Figure 5.21: On the left, the log-density of the samples is shown, while on the
right, the plot of the successive differences of the mean of the estimated

parameters in logarithmic scale is displayed. Both graphs depend on the number of
iterations. Figure created by the author using Julia (see [21]).

Figure 5.22: This figure presents the dynamics of the point statistics for the data
obtained from the model’s state variables. The black points represent the data, the

red line represents the maximum a posteriori estimator, and the blue line
corresponds to the conditional mean estimator. Figure created by the author using

Julia (see [21]).
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Chapter 6
Conclusions and Future Work

This study focused on analyzing parameter estimation methods within the
framework of Markov Chain Monte Carlo (MCMC) algorithms, particularly the
Metropolis-Hastings algorithm. The results highlight the effectiveness of these
techniques in different scenarios and emphasize the importance of carefully selecting
proposal distributions and tuning algorithmic parameters to achieve efficient
convergence.

Future research directions could explore various extensions and refinements of
MCMC methods. One potential line of study is the application of different variations
of the Metropolis-Hastings algorithm that incorporate additional information about
the target distribution, potentially improving convergence rates and estimation
accuracy.

Another relevant research avenue involves studying the convergence properties of the
Metropolis-Hastings algorithm in the context of parameter estimation for both linear
models and differential equation models. A rigorous analysis of convergence criteria
in these frameworks could provide deeper insights into the theoretical underpinnings
of the algorithm and its applicability to complex dynamical systems.

Furthermore, the problem of prediction can be formulated as a non-stationary
inverse problem that involves data assimilation techniques. In this regard,
methodologies based on Markov models, such as Kalman filters, offer promising
approaches to integrating new data dynamically and improving predictive
performance.

A particularly interesting extension involves parameter estimation in other types of
dynamical systems, including partial differential equations (PDEs) and stochastic
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differential equations (SDEs). Investigating the feasibility and limitations of
applying the concepts developed in this thesis to stochastic processes could yield
valuable theoretical and practical contributions to the field.

These proposed research directions not only extend the scope of the current study
but also open new possibilities for enhancing parameter estimation methodologies
in various applied contexts.
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Appendix A
Probability

This appendix provides a summary of the fundamental concepts in probability
theory, focusing on measure theory, random variables, and conditional probabilities.
These concepts are essential for understanding statistical inversion theory. All
definitions and results are supported in [18].

Definition A.1. (Probability space) A probability space is defined as a triple
(Ω,S, P ), where:

• Ω is the sample space, representing all possible outcomes of an experiment.

• S is a σ-algebra, a collection of subsets of Ω that satisfies the following
properties:

1. Ω ∈ S.

2. If A ∈ S, then its complement Ac = Ω \ A also belongs to S.

3. For any countable collection of sets {Ai}∞
i=1 in S, their union ⋃∞

i=1 Ai is
also in S.

• P is a probability measure, a function P : S → [0, 1] that satisfies:

1. P (A) ≥ 0 for all A ∈ S.

2. P (Ω) = 1.

3. For any countable collection of disjoint sets {Ai}∞
i=1 in S, P (⋃∞

i=1 Ai) =∑∞
i=1 P (Ai).
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Definition A.2. (Borel σ-algebra) Let (X, d) be a metric space. The Borel
σ-algebra on X, denoted by B(X), is the smallest σ-algebra that contains all open
sets of X.

Explicitly, B(X) is the collection of subsets of X that can be formed by countable
unions, countable intersections, and relative complements of open sets. That is,
B(X) is the σ-algebra generated by the topology of X.

In the specific case where X = Rn with the standard Euclidean topology, the Borel
σ-algebra B(Rn) is the smallest σ-algebra containing all open subsets of Rn.

Definition A.3. (Measure) A measure µ over the tuple (Ω,S), where Ω is a
samaple space and S is a σ−algebra defined over Ω, is a function µ : S → [0,∞)
that satisfies:

1. µ(∅) = 0.

2. µ (⋃∞
i=1 Ai) = ∑∞

i=1 µ(Ai) where {Ai} is a countable collection of elements of
S, disjoint pairwise.

Definition A.4. A measure µ is called σ-finite if there exists a countable sequence
of sets {An}∞

n=1 in S such that Ω = ⋃∞
n=1 An and µ(An) < ∞ for all n. A probability

measure is a special case where µ(Ω) = 1.

Definition A.5. (Random variable) A random variable X is a measurable
function X : Ω → Rn, meaning that for every Borel set B ⊂ Rn, the preimage
X−1(B) ∈ S. The probability distribution of X is the measure µX defined on the
Borel σ-algebra of Rn as:

µX(B) = P (X−1(B)), B ∈ B(Rn).

The cumulative distribution function (CDF) of X is given by:

F (x) = P (X1 ≤ x1, . . . , Xn ≤ xn), x = (x1, . . . , xn) ∈ Rn.

If X is absolutely continuous with respect to the Lebesgue measure, its probability
density function (PDF) πX satisfies:

µX(B) =
∫

B
πX(x) dx, B ∈ B(Rn).

Definition A.6. The expectation of a random variable X is defined as:

E{X} =
∫

Ω
X(ω) dP (ω) =

∫
Rn
x dµX(x).
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The covariance matrix of X is given by:

cov(X) = E
{
(X − E{X})(X − E{X})T

}
.

For two random variables X1 and X2, their joint probability distribution is defined
as:

µX1X2(B1, B2) = P (X−1
1 (B1) ∩X−1

2 (B2)), B1 ∈ B(Rn1), B2 ∈ B(Rn2).

Conditional probability is a fundamental concept in probability theory and statistical
inference.

Definition A.7. (Conditional probability) For two events A,B ∈ S with
P (B) > 0, the conditional probability of A given B is defined as:

P (A|B) = P (A ∩B)
P (B) .

This definition extends to random variables. Let X1 and X2 be random variables
with joint probability density π(x1, x2). The conditional probability density of X1

given X2 = x2 is:

π(x1|x2) = π(x1, x2)
π(x2)

, where π(x2) =
∫
Rn1

π(x1, x2) dx1 > 0.

The joint probability density can then be expressed as:

π(x1, x2) = π(x1|x2)π(x2) = π(x2|x1)π(x1).

This relationship is known as Bayes’ formula and is central to Bayesian inference.

Definition A.8. (Independence) Two random variables X1 and X2 are
independent if their joint probability distribution factorizes as:

µX1X2(B1, B2) = µX1(B1)µX2(B2), B1 ∈ B(Rn1), B2 ∈ B(Rn2).

For absolutely continuous random variables, independence is equivalent to:

π(x1, x2) = π(x1)π(x2) almost everywhere.

Definition A.9. (Normal or Gaussian distribution) A random variable X

follows a univariate Gaussian distribution (or normal distribution) with mean µ ∈ R
and variance σ2 > 0 if its probability density function (PDF) is given by

fX(x) = 1√
2πσ2

exp
(

−(x− µ)2

2σ2

)
, x ∈ R.
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This is denoted as X ∼ N (µ, σ2).

On the other hand, a random vector X ∈ Rd follows a multivariate Gaussian
distribution with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d (where
Σ is symmetric and positive semi-definite) if its probability density function is given
by

fX(x) = 1
(2π)d/2 det(Σ)1/2 exp

(
−1

2(x − µ)T Σ−1(x − µ)
)
, x ∈ Rd.

This is denoted as X ∼ N (µ,Σ).

Theorem A.10. Let {Xn}∞
n=1 be a sequence of independent and identically

distributed (i.i.d.) random variables with mean µ and variance σ2. Define the
normalized sum:

Sn = 1
n

n∑
j=1

Xj.

The CLT states that:

lim
n→∞

P

(
Sn − µ

σ/
√
n
< x

)
= 1√

2π

∫ x

−∞
e−t2/2 dt.

In other words, the distribution of Sn converges to a standard normal distribution
as n → ∞.

Definition A.11. (Stochastic process) A stochastic process is defined as a
collection of random variables defined on a common probability space (Ω,F , P ),
where Ω is the sample space, F is a σ-algebra, and P is a probability measure. The
random variables, indexed by some set T , all take values in the same measurable
space S, which must be measurable with respect to some σ-algebra S.

Formally, a stochastic process is a collection of S-valued random variables, which
can be written as:

{X(t) : t ∈ T},

where each X(t) is a random variable associated with the index t ∈ T . Historically,
in many problems from the natural sciences, the index t ∈ T represented time, and
thus X(t) represents a random variable observed at time t. A stochastic process can
also be written as:

{X(t, ω) : t ∈ T},

which emphasizes that the process is actually a function of two variables, t ∈ T and
ω ∈ Ω.
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In some alternative formulations, a stochastic process may be interpreted as an
ST -valued random variable, where ST is the space of all possible functions from the
set T into the space S. This alternative definition requires additional regularity
assumptions to be well-defined.
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Appendix B
Linear algebra

This appendix compiles fundamental results from matrix algebra, focusing on their
computational aspects (see [10,19]). A fundamental result in linear algebra is the
singular value decomposition (SVD), which is stated as follows.

Theorem B.1. (SVD decomposition) Every matrix A ∈ Rm×n can be
decomposed as

A = UΛV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Λ ∈ Rm×n is a
diagonal matrix with nonnegative diagonal elements λj satisfying λ1 ≥ λ2 ≥ · · · ≥
λmin(m,n) ≥ 0.

The proof follows an inductive approach based on partial diagonalization using
orthogonal transformations.

Proof. Before proceeding with the proof, it is recalled that a diagonal matrix is of
the form

Λ =



λ1 0 . . . 0 0 . . . 0
0 λ2

. . . . .
. . . .

. .
. . . . . . . . .

. . . 0
0 . . . λm 0 . . . 0

 = [diag(λ1, . . . , λm), 0],

if m ≤ n, and where 0 denotes a zero matrix of size m×(n−m). Similarly, if m > n,
Λ is of the form
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Λ =



λ1 0 . . . 0
0 λ2

. . . .

. .
. . . λn

0 . . . 0 .

. . . . . .

0 . . . 0


=
diag(λ1, . . . , λn)

0

 ,

where 0 is a zero matrix of size (m − n) × n. Briefly, Λ is written as
diag(λ1, . . . , λmin(m,n)).

Let ∥A∥ = λ1, assuming that λ1 ̸= 0. Let x ∈ Rn be a unit vector such that
∥Ax∥ = λ1. Define y = (1/λ1)Ax ∈ Rm, meaning that y is also a unit vector.
Vectors v2, . . . , vn ∈ Rn and u2, . . . , um ∈ Rm are chosen such that {x, v2, . . . , vn}
forms an orthonormal basis in Rn and {y, u2, . . . , um} forms an orthonormal basis
in Rm.

Defining

V1 = [x, v2, . . . , vn] ∈ Rn×n, U1 = [y, u2, . . . , um] ∈ Rm×m,

it follows that these matrices are orthogonal. Consequently,

A1 = UT
1 AV1 =


yT

uT
2
...
uT

m

 [λ1y, Av2, . . . , Avn] =
λ1 wT

0 B

 ,

where w ∈ R(n−1) and B ∈ R(m−1)×(n−1). Since

A1

λ1

w

 =
λ2

1 + w2

Bw

 ,
it follows that

∥A1∥ ≥ λ2
1 + ∥w∥2.

On the other hand, since an orthogonal transformation preserves the matrix norm,
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∥A∥ = ∥A1∥ ≥ λ2
1 + ∥w∥2.

Therefore, w = 0.

Proceeding inductively, let λ2 = ∥B∥, where λ2 ≤ ∥A1∥ = ∥A∥ = λ1. If λ2 = 0, then
B = 0 and the proof is complete. If λ2 > 0, orthogonal matrices Ũ2 ∈ R(m−1)×(m−1)

and Ṽ2 ∈ R(n−1)×(n−1) are found such that

ŨT
2 BṼ2 =

λ2 0
0 C

 ,
for some C ∈ R(m−2)×(n−2). Defining

U2 =
1 0
0 Ũ2

 , V2 =
1 0
0 Ṽ2

 ,
orthogonal matrices are obtained such that

UT
2 U

T
1 AV1V2 =


λ1 0 0
0 λ2 0
0 0 C

 .

By iteratively applying this partial diagonalization through orthogonal
transformations, the result follows.

A key consequence of the singular value decomposition is the characterization of the
null space and range of a matrix.

Theorem B.2. Let A = UΛV T ∈ Rm×n be its singular value decomposition, and
assume that λ1 ≥ λ2 ≥ · · · ≥ λp > λp+1 = · · · = λmin(m,n) = 0. Defining

U = [u1, . . . , um], V = [v1, . . . , vn],

the kernel and range relations are given by

Ker(A) = span{vp+1, . . . , vn} = Ran(AT )⊥,

Ker(AT ) = span{up+1, . . . , um} = Ran(A)⊥.
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Additionally, the orthogonal projectors onto Ker(A) and Ker(AT ) can be expressed
in terms of V and U as

P = V2V
T

2 , P̃ = U2U
T
2 ,

where V2 and U2 correspond to the basis vectors spanning the respective kernels.

These results provide a fundamental basis for further exploration of matrix
decompositions and their applications in numerical analysis.

Definition B.3. (Moore-Penrose pseudoinverse) Let A ∈ Rm×n be a matrix.
The Moore-Penrose pseudoinverse of A, denoted by A+, is the unique matrix A+ ∈
Rn×m that satisfies the following four conditions:

1. AA+A = A.

2. A+AA+ = A+.

3. (AA+)T = AA+.

4. (A+A)T = A+A.

The Moore-Penrose pseudoinverse generalizes the concept of the inverse of a matrix
and exists for any matrix, even if it is not square or not of full rank.

Definition B.4. (Condition number) Let A ∈ Rn×n be an invertible matrix. The
condition number of A, denoted as κ(A), is defined as

κ(A) = ∥A∥∥A−1∥,

where ∥ · ∥ is a chosen matrix norm, typically the spectral norm (induced by the
Euclidean norm). In this case,

κ(A) = σmax(A)
σmin(A) ,

where σmax(A) and σmin(A) are the largest and smallest singular values of A,
respectively.

The condition number measures the sensitivity of the solution of a linear system
Ax = b to perturbations in b or A. A high condition number indicates an
ill-conditioned matrix, meaning that small changes in the input can lead to large
variations in the output.
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Appendix C
Analysis

In this appendix, several fundamental concepts from analysis are presented,
including metric spaces, Lipschitz functions, Banach’s fixed-point theorem, and
function spaces (extracted from [10, 20]).

Definition C.1. A metric space (X, d) consists of a set X together with a function
d : X × X → R, called a metric, that satisfies the following properties for all
x, y, z ∈ X:

• (Non-negativity) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

• (Symmetry) d(x, y) = d(y, x).

• (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Definition C.2. A function f : X → Y between metric spaces (X, dX) and (Y, dY )
is said to be Lipschitz continuous if there exists a constant L ≥ 0 such that for all
x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ LdX(x1, x2).

If L < 1, f is called a contractive mapping.

Definition C.3. (Function spaces) Let Ω be a subset of a metric space Rn.

• C(Ω): The space of continuous functions on Ω.

• Ck(Ω): The space of functions with continuous derivatives up to order k in Ω.

• C∞(Ω): The space of infinitely differentiable functions in Ω.
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• Lp(Ω): The space of measurable functions f such that
∫

Ω |f(x)|pdx < ∞.

Theorem C.4. (Banach fixed point theorem) Let (X, d) be a complete metric
space, and let T : X → X be a contractive mapping, i.e., there exists 0 ≤ c < 1
such that

d(T (x), T (y)) ≤ c d(x, y), for all x, y ∈ X.

Then, T has a unique fixed point x∗ ∈ X such that T (x∗) = x∗. Moreover, for any
initial point x0 ∈ X, the sequence defined by xn+1 = T (xn) converges to x∗.

Proof. Let x0 ∈ X be an arbitrary initial point, and consider the sequence defined
by xn = T (xn−1) for n ≥ 1. It is now shown that (xn) is a Cauchy sequence. First,
it holds that

d(xn, xn+1) = d(T (xn), T (xn−1)) ≤ Ld(xn, xn−1).

Applying this inequality iteratively,

d(xn, xn+1) ≤ Lnd(x1, x0).

For any m > n, using the triangle inequality,

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

Lkd(x1, x0).

Since the geometric series ∑∞
k=n L

k converges, it follows that the sequence (xn) is
Cauchy. Given that X is complete, there exists a limit x∗ ∈ X such that xn → x∗.
Taking limits in the recurrence relation xn = T (xn−1) leads to T (x∗) = x∗.

To establish uniqueness, suppose there exists another fixed point y∗ ̸= x∗. Then,

d(x∗, y∗) = d(T (x∗), T (y∗)) ≤ Ld(x∗, y∗),

which is impossible unless d(x∗, y∗) = 0. Thus, x∗ = y∗, proving the uniqueness of
the fixed point.
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